

Performance studies of RPC detectors with new environmentally friendly gas mixtures in presence of LHC-like radiation background

R. Guida, B. Mandelli, <u>G. Rigoletti</u>

CERN

Université Claude Bernard Lyon I

XV Workshop on Resistive Plate Chambers and Related Detectors RPC2020 (RPC2020) 10-14 February 2020 Rome, Italy

Outline

Overview on the Resistive Plate Chambers *gas mixtures* and possible alternatives

Characterization of RPCs with new eco-friendly gas mixtures

- RPC *performance* with *R134a* alternatives
- RPC *performance* with *SF6* alternatives

RPC *operation* with new environmentally friendly gas mixtures at CERN Gamma Irradiation Facility (GIF++)

Greenhouse Gases in RPC operation

RPC gas mixture at LHC

→ Made out of **three** components

 \rightarrow High Global Warming Potential due to presence of <u>SF6</u> and <u>R134a</u>

GHG emissions

- \rightarrow The **main** contribution is from <u>**R134a**</u>
- \rightarrow <u>R134a</u> and <u>SF6</u> due to *leaks* at *detector level* at ATLAS and CMS RPCs
- \rightarrow A campaign of *leaks reparation* is currently ongoing

European Union F- regulation

- \rightarrow Limit the total amount of F- gases that can be sold \rightarrow Phase down process
- \rightarrow **Banning the use of F- gases** where eco friendly alternatives are present
- → **Preventing emissions** by requiring proper
- checks and servicing of the gases and recovery of the gases

RPC gas mixtures - R134a

<u>Goal: find and eco-friendly gas mixture compatible with the current ATLAS and</u> <u>CMS RPC systems (i.e. requires no change in the HV cables, FE electronics, gas</u> <u>system etc.)</u>

RPC gas mixtures - SF6

- → Dielectric/Ionization *performance*
- → **Safety** risks
- → environmental *sustainability*

Goal: find and eco-friendly gas mixture compatible with the current ATLAS and CMS RPC systems (i.e. requires no change in the HV cables, FE electronics, gas <u>system etc.)</u>

Experimental setup for cosmic muons

Characterization of alternative gas mixtures

Initially, R134a was completely replaced by HFO

- Results indicate **higher working voltage** (>12kV) → Related to C=C bound
- Avalanche signals smaller compared to Standard Gas Mixture

An addition of a gas to lower the working point is required

- Use of CO_2 as an inert gas: +10 % $CO_2 \rightarrow$ - 800V

The streamer probability increases \rightarrow CO₂ different quenching properties w.r.t. to iC₄H₁₀ Need to keep a *small amount of R134a* and increase *SF*₆ concentration

Selected HFO based gas mixtures

Over 50 different gas mixtures tested

Tested 3, 4 and 5 components gas mixtures

HFO based gas mixture

Performed best together with CO_2 and R134aHFO + CO_2 + R134a + 4.5% iC_4H_{10} + 1% SF_6

Fine tuning of HFO gas mixtures

Two candidates that can compete with the standard gas mixture

Gas mixture	Workin g point [V]	St. Prob. [%]	Pulse charge av [pC]	Pulse charge st [pC]	Cluster size [#/2cm]	Time resolutio n [ns]
Standard	9440	1.2	0.8	10.1	2	1.9
HFO/R134a/ iC4H10/SF6 + 50% CO2	10260	4.4	1.1	14.7	2.3	2
HFO/R134a/ iC4H10/SF6 + 40% CO2	10790	4.4	1.1	11.8	2.2	1.8

SF6 alternatives - C₄F₈O

Pros:

 \rightarrow Good performance and stability

 \rightarrow Easy enough to be used in gas form

(sufficient vapour pressure)

Cons:

 \rightarrow Not really eco-friendly (GWP ~ 8000)

 \rightarrow Required percentage to match SF6 is not eco-friendly anymore

Gas mixture	Working point [V]	St. Prob. [%]	Pulse charge av [pC]	Pulse charge st [pC]	Cluster size [#/2cm]	Time resolutio n [ns]
standard	9440	1.2	0.8	10.1	2	1.9
R134a/iC4H10 4.5/C4F8O 0.3	9270	7.8	1.4	23.9	2	3.2
R134a/iC4H10 4.5/C4F8O 0.5	9410	8.2	1.3	18.1	2.1	3.1
R134a/iC4H10 4.5/C4F8O 1.0	9640	6.8	1.4	16.7	1.6	3.1
R134a/iC4H10 < 4.5/C4F8O 1.5	9850	3.1	0.9	19.5	2.5	1.7

SF6 alternatives - CF₃I

Pros:

- \rightarrow Very low GWP (0.4)
- \rightarrow Very good performance for SF6
- \rightarrow Good vapour pressure

Cons:

- → Toxic, mutagenic
- \rightarrow ODP very low (0.008) but not 0
- \rightarrow May react with water

Gas mixture	Worki ng point [V]	St. Prob. [%]	Pulse charge av [pC]	Pulse charge st [pC]	Cluster size [#/2cm]	Time resolution [ns]	
standard	9440	1.2	0.8	10.1	2	1.9	
R134a/iC4H10 4.5/CF3I 0.1	9390	7.4	1.2	30.5	2.4	1.7	
R134a/iC4H10 4.5/CF3I 0.3	9560	1.6	0.8	25.9	2.4	1.7	
R134a/iC4H10 4.5/CF3I 0.5	9700	1	0.8	25.8	2.4	1.8	Þ
R134a/iC4H10 4.5/CF3I 1.0	9940	1.4	0.8	16.5	2.3	1.8	
R134a/iC4H10 4.5/CF3I 1.5	10220	1.9	0.8	7.6	2.6	1.8	

SF6 alternatives - Novec 4710 ($(CF_3)_2 CFC \equiv N$

Pros:

→ Very good performance in small concentrations, high dielectric strength

 \rightarrow Good vapour pressure

Cons:

- → GWP not 0 (~ 2200)
- \rightarrow May react with water

	Gas mixture	Working point [V]	St. Prob. [%]	Pulse charge av [pC]	Pulse charge st [pC]	Cluster size [#/2cm]	Time resolution [ns]
	standard	9440	1.2	0.8	10.1	2	1.9
<	R134a/iC4H10 4.5/4710 0.1	9620	1.3	0.9	8.5	2	1.9
	R134a/iC4H10 4.5/4710 0.15	9730	1.5	0.9	9.7	1.9	1.8
	R134a/iC4H10 4.5/4710 0.2	9960	1.2	0.9	8.8	2	1.9
	R134a/iC4H10 4.5/4710 0.3	10080	1.5	0.9	14	2	1.9
	R134a/iC4H10 4.5/4710 0.5	10490	1.4	0.9	9.7	1.8	1.9
	R134a/iC4H10 4.5/4710 0.7	10750	1.5	0.8	10.8	2.1	1.9

SF6 alternatives - Novec 5110 - (CF₃)₂CFC(0)CF₃

Pros:

- \rightarrow Very low GWP (<1)
- \rightarrow Theoretically high dielectric strength

Cons:

- \rightarrow Difficult to be treated as a gas (high boiling point ~ 27 °C)
- \rightarrow May solubilize in water
- \rightarrow Sensitive to UV radiation

Gas mixture	Working point [V]	St. Prob. [%]	Pulse charge av [pC]	Pulse charge st [pC]	Cluster size [#/2cm]	Time resolution [ns]
standard	9440	1.2	0.8	10.1	2	1.9
R134a/ iC4H10 4.5/5110 0.3	9460	16.5	1.9	20.8	2.2	16.9
R134a/ iC4H10 4.5/5110 1.0	9920	4.2	1.2	12.8	1.9	1.9
R134a/ iC4H10 4.5/5110 2.0	10400	2.8	1	10.5	2.3	2

Why it is difficult to find eco-friendly alternatives

GWP is related to:

- IR absorbance
- Residence time in the atmosphere

Three factors determine the atmospheric lifetime

Water solubility	→ Rain out
Reactivity with OH	\rightarrow Oxidation
UV absorbance	→ Photolysis

Atmospheric lifetime is a *sum* of these effects!

SF6 and R134a performance are difficultly matched also because of their **stability in atmosphere**

Novec gases atmospheric properties

Novec 5110 gas	(CF ₃	O ₽ ₽ ₽ CFCCF₃
Rain Out	\rightarrow	Water Solubility very low water solubility (1 ppmw)
Oxidation	\rightarrow	Reactivity with •OH unreactive w/ •OH radicals
Photolysis	\rightarrow	UV Absorbance strong absorbance in near UV (wavelengths ≥ 300 nm)
Novec 4710 ga	s (CF ₃	₃)₂CF <mark>C≡N</mark>
Rain Out	\rightarrow	Water Solubility very low water solubility (272 ppbw)
Oxidation	\rightarrow	Reactivity with •OH reactive w/ •OH radicals
Photolysis	\rightarrow	UV Absorbance transparent in near UV

John G. Owens, 3M, Greenhouse Gas Emission Reductions from Electric Power Equipment through Use of Sustainable Alternatives to SF6

CERN Gamma Irradiation Facility (GIF++)

Goal: study **RPC performance** with **muon beam**, **gamma background** and **HFO** based gas mixtures

GIF++ facility

- Located along SPS line, north area
- Built to emulate the background conditions of LHC

→ Gamma Source

¹³⁷Cs of 14 TBq \rightarrow 662 KeV gamma peak background

→ Muon Beam

100 GeV, 104 muons/spill, 10x10 cm² area Test beam 2018

Setup DAQ and DCS

- Raw waveform acquisition via v1730 digitizer
- HV control via dcs
- Online monitoring of gas parameters via influxdb
- + grafana
- EOS storage of data
- Offline analysis python + pandas + numpy on SWAN

Test beam 2018 - Muon efficiency vs. currents

→Efficiency curves are plotted against **effective voltage** seen by **gas gap** (HV_{eff} = HV_{app} – RI)

→Data is fitted with a **sigmoid** → Information about **maximum efficiency** and **knee** →**Currents raise** of ~20% with a change of 10% of CO_2

-Δ(eff – str.) increases when CO_2 decrease

Test beam 2018 - Pulse charge

 \rightarrow The mean avalanche charge is higher for the eco-friendly gas mixtures

 \rightarrow The mean streamer charge is slightly lower for the eco-friendly gas mixtures

Gas recirculation system

High background rate **RPC operation must be validated under LHC like conditions** Gas recirculation **RPCs operated under gas recirculation with eco-friendly gas mixtures** Validation with selected HFO based gas mixture Gas mixer **Cosmics validated** - Up to 5 component Stable performance, low current - Ar and N2 lines for flushing Gamma irradiation validation ongoing Stable currents, change in detector resistivity observed Monitoring of currents and integrated charge 400 Gas recirculation unit 300 Current [uA] - From 0% to 100% 200 100 **Gas Analysis** - GC/MS 2019.05-29.06.01 2019.06.13 2019.06.17 2019.06.05 2019-06-09 2019.06.21 2019.06-25 2019-05-25 - ISE (F⁻ concentration)

Creation of impurities under irradiation

Impurities created from R134a and HFO

- Under the effect of high background radiation and electric fields Freons molecules break into fluorine radicals

- F- radicals are very reactive, especially with water \rightarrow HF formation, may be aggressive for electrode surface
- Sub-products in the order of the ppm
- Accumulation in case of closed loop system

Creation of impurities observed also in RPCs at LHC experiments during Run 2

- Safety limit is still being understood

HFO gases have shorter atmospheric lifetime than R134a

- They could break more easily

- F- production depends on the current of the detector and the prompt charge size

Creation of impurities under irradiation

Radiation measurements with HFO based gas mixture

Test performed by irradiating 2 RPCs at different background rates and at different voltages

- Open mode, fixed flow and correction for environmental conditions

Gas mixture tested:

- Standard Gas mixture and selected eco-friendly
- Comparison between the production of impurities Impurities measured with different instruments
- Gas Chromatographer / Mass spectrometer
- Ion Selective Electrodes (ISE) for F- measurements

At detector efficiency

- The production depends on the background rate
- The F- production of the selected eco-friendly gas mixture
- is ~4 times higher than the standard gas mixture

Conclusions

R&D goal: find an eco-friendly gas mixture compatible with the current ATLAS and CMS RPC systems

Eco friendly gas mixture for RPCs

- HFO not suitable for direct substitution to R134a in currents 2mm gap RPCs
- HFO requires an inert gas to work at lower working points (<12 kV)

Characterization of RPCs with eco-friendly gas mixtures

- More than 50 different gas mixture tested
- HFO + CO₂ shows similar properties to the standard gas mixture

SF6 alternatives studies are on going

- Difficult to find eco-friendly gas with matching performance or safety
- Some promising gas mixtures show similar performance

RPCs operation with eco-friendly gas mixtures under background irradiation

- RPC tested up to HL-LHC expected rate (~300 Hz/cm² counting rate)
- Streamer probability and currents are slightly higher for HFO based gas mixtures
- Long term performance studies of eco-friendly mixture are currenly going on
- HFO seems to break more easily to R134a: studies ongoing on the causes and possible solutions

Thank you

Recirculation system

Other tested mixtures

	Chem struc	GWPmi x	HV (V)	Stream er (%)	Pulse charge (pC)	ΔV Eff- Stream (V)	Clu Size (strip)
R32-iC₄H₁₀ -SF₀ 0.6	C	1030	7500	14	0.5 / 6.5	600	1.5
R134a-iC ₄ H ₁₀ -SF ₆ 0.3	C-C	1490	9600	1.5	0.5 / 6	1000	1.5
R152a-iC4H10-SF6 0.6	C-C	430	10000	10	1 / 8.5	760	1.6
R245fa-iC ₄ H ₁₀ -SF ₆ 0.6-He 50	C-C-C	1260	6600	20	1/7	610	2
HFO-iC ₄ H ₁₀ -SF ₆ 0.3-Ar 42.5	c=c-c	130	8900	70	2 / 15	160	4
HFO-iC ₄ H ₁₀ -SF ₆ 0.6-He 50	c=c-c	370	9000	20	1.5 / 8	700	4
HFO-R134 37.45-iC ₄ H ₁₀ -SF ₆ 0.6- He 20	C=C-C	890	10500	1.8	0.5 / 6	970	1.6
HFO-R134a 50-iC ₄ H ₁₀ -He 20	c=c-c	430	10800	50	1.5 / 8	400	2.5
HFO-R134a 22.5 -iC ₄ H ₁₀ - CO ₂ 50- SF ₆ 1	C=C-C	560	10500	5	1.5 / 7.5	950	1.5

More details on muon efficiency

Software analysis

Chamber Performance

Typical HV SCAN with fit parameters

- The knee \equiv 0.95 × Eff max
- Working Point Barrel \equiv knee +100V
- Working Point Endcap \equiv knee +150V

https://twiki.cern.ch/twiki/bin/view/Main/EndcapReshufflingRpc

SF6 equivalent emissions

Greenhouse Gas Comparison

Preventing emission of 1 kg (2.2 lbs) of SF₆ has the equivalent environmental impact as:

John G. Owens, 3M, Greenhouse Gas Emission Reductions from Electric Power Equipment through Use of Sustainable Alternatives to SF6

More details on muon efficiency

Mixture	F- rate production	Contribution to the mixture
95.2% R134a	10ppm/h	R134a = 10.5ppm/h
HFO + 40%CO2	40ppm/	HFO = 136ppm/h

