RPC System in the CMS Level-1 Muon Trigger

Brieuc François¹ on behalf of the CMS collaboration RPC2020, Roma

¹Hanyang University (Korea)

- > Why do we need a Muon Trigger?
- How do we design it in CMS?
 - Before (run I)
 - Now (run II and run III)
 - > What's next? (HL-LHC)
- How do we use the RPC system?

Introduction

- An important challenge when trying to improve our understanding of elementary particle physics is to be able to study rare processes
 - > Rates can be orders of magnitude smaller than the inclusive pp interaction rate (Higgs $\sim 10^{10}$ smaller)
 - Can not afford recording every collision with current technologies (bandwidth, storage and computing power)
- > Way out: keep only potentially 'interesting' events

- An important challenge when trying to improve our understanding of elementary particle physics is to be able to study rare processes
 - > Rates can be orders of magnitude smaller than the inclusive pp interaction rate (Higgs $\sim 10^{10}$ smaller)
 - Can not afford recording every collision with current technologies (bandwidth, storage and computing power)
- Way out: keep only potentially 'interesting' events

- An important challenge when trying to improve our understanding of elementary particle physics is to be able to study rare processes
 - > Rates can be orders of magnitude smaller than the inclusive pp interaction rate (Higgs $\sim 10^{10}$ smaller)
 - Can not afford recording every collision with current technologies (bandwidth, storage and computing power)
- Way out: keep only potentially 'interesting' events

Muons in Trigger

- Many interesting processes involve muons
 - Higgs, SM Physics, BSM (e.g. 2HDM, HSCP), ...
- Muons have a clean experimental signature
 - Suitable candidate for triggering purposes!
- > About ³/₄ of data analyses in CMS rely on muon(s)!

RPC in CMS Level-1 Muon Trigger

CMS Level-1 Muon Trigger

CMS Trigger System is made of two components

- Level 1 Trigger (L1T)
 - Rate reduced by a factor 400
 - Decision taken in 3.6 µs
 - Custom hardware
 - Information from calorimeters and muon detectors
- High Level Trigger (HLT)
 - Rate reduced by a factor 100
 - Decision taken in hundreds of ms
 - Commercial server farm
 - Full detector information

CMS Trigger

CMS Trigger System is made of two components

- Level 1 Trigger (L1T) ۶
 - Rate reduced by a factor 400 ≻
 - Decision taken in 3.6 µs ۶
 - Custom hardware ۶
 - Information from calorimeters and muon detectors ≻
- High Level Trigger (HLT) ≻
 - Rate reduced by a factor 100 ۶
 - Decision taken in hundreds of ms ۶
 - Commercial server farm ۶
 - Full detector information ۶

This talk!

CMS Muon System

RPC in CMS Level-1 Muon Trigger

Muon Trigger

 Uses Trigger Primitives (TP) from different sub-detectors to identify tracks associated to muons and evaluate their transverse momentum

Legacy Trigger architecture used in Run I ('Phase-0 Trigger')

- Trigger primitives built in a totally factorized way
- Muon Track Finders (MTF) almost completely independent for the three muon sub-systems

Run I muon trigger architecture

Reorganization of the muon trigger architecture from sub-system based to geometry based for **run II** (current trigger architecture)

- Information from different sub-systems is available together at earlier stage in the \geqslant trigger chain
- Increased redundancy \succ
- Allows to use detectors complementarity at earlier stage to build better trigger \succ primitives

Run II muon trigger architecture

* Module with RPC hit clustering and cluster selection

RPC in CMS Level-1 Muon Trigger

RPC + DT (run II)

- RPC + DT 'SuperPrimitives'
 - > Makes the best out of DT spatial resolution and RPC time resolution (complementarity)
 - > RPC is used to assign the bunch-crossing of DT segments's without 8 fired layers
 - > TP efficiency increases by 1.4 %
 - In case of DT chamber inefficiency in MB1 and MB2, build RPC-only segment (redundancy)
 - > TP efficiency increases by $\sim 4\%$

RPC in CMS Level-1 Muon Trigger

system

Wheel 1

Barrel MTF (DT+RPC)

RB4

RB1

Wheel 2

۶

Wheel 0

Solenoid magnet

HCAL

ECAL

Silic

5

3

2

17 207

1.9 17.0

2.0 15.4

2.1 14.0° 2.2 12.6° 2.3 11.5°

2.4 10.4°

2.5 9.4

3.0 5.7°

4.0 2.1° 5.0 0.77

12 z (m) 0 S

and

P

Õ

cap

10

11

Steel

07

- RPC is a key player in the complicated Overlap region $(0.8 < |\eta| < 1.2)$
 - - RPC system is present both in the barrel and the

 - 0.8 95(80)% efficient with(without) using the RPC 0.6 Overlap MTF (CSC+DT+RPC)

Efficiency

0.4

0.2

۲o

20

30

40

50

60

70

80

[GeV]

RPC in OMTF (run II)

L1 muon efficiency

0.8

0.6

0.4

0.2

Run II Muon Trigger Performances

- Run II muon trigger has up to factor 5 ≻ reduced rate compared to the legacy trigger
 - Keeping same efficiency
 - Due to many factors (merging ≻ detector information earlier, usage of more advanced algorithms, ...)

CMS preliminary 2017 data 6.8 fb⁻¹ (13 TeV)

Upgraded trigger Legacy (emulated)

 $0 < |\eta| < 2.4$

Tight L1 quality

L1 p_ ≥ 25 GeV

80

100 p_ (GeV/c)

15

Phase II (HL-LHC) Muon Trigger Upgrade

Phase II Level-1 Trigger

Key aspects of the L1Trigger Upgrade

- > $100 \rightarrow 750 \text{ kHz}$ rate to HLT
- > $3.6 \rightarrow 12.5 \ \mu s$ latency
- Refactored architecture
 - Merging sub-detectors information even earlier (DT and RPC hits available in the same boards)
- > Increased bandwidth
- Availability of tracking information

* Module with RPC hit clustering and cluster selection

RPC Phase II Upgrade

RPC Phase II Upgrade

- Link System
 - Increased readout frequency (every 25 ns \rightarrow
- Improved RPC (iRPC)
 - Extended η coverage with new RE3/1 and 4/1chambers
 - 2D readout \rightarrow hit position along the strip ($\sim 2 \text{ cm}$ resolution)
 - Improved intrinsic time ۶ resolution (thinner gaps) + modern electronics

- Barrel Muon TP Efficiency \succ
 - Shown with/without RPC+DT combination, with/without DT ageing and RPC failures ≻
 - DT ageing: efficiency loss due to ۶ integrated dose at the end of Phase II
 - RPC failures: switching off chambers ۶ (end of Phase II extrapolation of failures based on run I and run II experience)
 - Even at the end of Phase II, barrel ۶ **TP efficiency stays within 92-99%** with the use of RPC (up to 23% efficiency gain)

* AM and HB refers to different DT TP algorithms, only AM has RPC included

- Time resolution
 - > Barrel (left): RPC improves TP time resolution by $\sim 15(30)\%$ without(with) DT aging
 - Endcap (right): RPC is the only muon detector providing timing with more granularity than a bunch-crossing – iRPC simulation does not incorporate last electronic developments

 RPC timing usage in Level-1 Trigger: Reduce out of time pile-up + New trigger path based on time of flight (more details in next slide)

time delay [ns]

RPC in Phase II MTF's

CMSPhase-2 simulation

14 TeV, <PU>=0 Efficiency iRPC extended $|\eta|$ coverage importantly increases ۶ forward muon efficiency when asking for 4 fired 08 stations 0.6 Heavy Stable Charged Particle (look like muons that ≻ move slowly) 0.4 + CSC+RPC (i)RPC time information can be used to build a new CSC+RPC+GEM CSC+RPC+GEM/iRPC trigger path based on time of flight 0.2 1.8 2 1.6 2.2 1.4 Generated ml CMS Phase-2 Simulation Preliminary 14 TeV, <PU>=0 Efficiency 0.9 Auon produced at BX= (luon produced at BX=+1 hi 25 n SCP produced at BX=0 0.8 SCP produced at BX=-1 0.7 12.5 ns 0.6 0 ns d. RPC hit Distance to the Vertex [cm] 0.5 0.4 -12.5 ns 0.3 -25 n 0.2 0.1 ase-1 Regular muon trigger (L1 Mu Open) 0.8 0.6 β_{GEN}

Future plans

- Yet some room for improvement!
 - Reduce CSC TP fake rate with iRPC 2D measurement
 - CSC 'double 1D' measurement leads to ghost hits when two real hits occur in the same chamber
 - Use RPC even earlier in the barrel TP building
 - Instead of acting on DT built segment, use RPC time to build them
 - > Use RPC timing to reject out of time hits in other sub-sytems
 - Improve RPC timing: Use DT η measurement to remove smearing coming from unknown signal propagation along the strip

- Level-1 Muon Trigger is crucial for the CMS physics program and significantly relies on the RPC System
 - Exploits the redundancy and complementarity of the different muon sub-systems
 - Merging sub-detector information at earlier stage results in increased performance
- Even with end of Phase II detector ageing/failures the muon trigger primitive efficiency remains well above 90% everywhere
- Phase II Upgrade brings new possibilities for RPC contribution to Level-1 Trigger
 - > Increased synergies with other muon sub-systems to build more robust TP
 - Increased trigger efficiency in forward region thanks to iRPC
 - Extended physics program thanks to the improved timing (HSCP)
- Many new ideas will be studied
 - Stay tuned!

Thank you!

Additional material

RPC in CMS Level-1 Muon Trigger

Barrel Architecture

Barrel muon TP architecture

Endcap Architecture

Endcap muon TP architecture

- RPC contributes to the three Level-1 ≻ Muon Track Finders differently
 - BMTF ($|\eta| < 0.83$): assign bunch crossing ≻ of low quality DT segments + build RPC only segments in MB1 and MB2 in case of DT segment absence
 - OMTF (0.83 < $|\eta|$ < 1.24): the 8 RPC ≻ chambers (5 in barrel, 3 in end-cap) are used for position information
 - EMTF ($|\eta| > 1.24$): RPC hits are used in ≻ case of CSC segment absence

- > Single hit spatial resolution (ϕ measurements) depends on chamber, type of hit, etc
 - > DT: Order of **hundreds of µm's**
 - CSC: Order of hundred of μm
 - > RPC: Order of **cm**
- Timing information available at L1 (run II)
 - > Bunch crossing granularity
- Efficiency
 - > ~93-96% for all muon detectors at L1

RPC in CMS Level-1 Muon Trigger

Brieuc Francois

Residuals RPC

Muon System Performances

RPC combined to other TP

Drift Tubes

4--

204

-

Muon

Track 1

ME 4 or 3 ring 1 CSC Chamber

CSC Segment position

iRPC 2D hit

Possibilities offered by a new L1T architecture

- Build DT segments already using RPC information
- Build CSC segment already using RPC information
 - Could resolve ambiguities when two muons cross the same chamber

