

XV Workshop on Resistive Plate Chambers and related detectors

Characterization of new eco friendly gas mixtures for RPCs mainly based on HFO

By : PROTO GIORGIA on behalf of Roma Tor Vergata group Rome 14 Febbraio 2020

Outline

Introduction

- Strategy
- ➢ HFO1234zd measurements
- ➢ HFO-1233zd measurements
- Conclusions

Introduction – Reference Parameters

- Net separation between pure avalanche regime and streamer mode over a large electric field interval
- > 98% of Efficiency @ 10 kV
- 2 pC of prompt charge and 10 pC of lonic charge at the working point
- ➤ High Global Warming Power (≈ 1430)

Parameters definition

Efficiency

- The threshold is fixed to the value of 5 times the RMS of the background calculated in the 20 ns time window which anticipates the signal
- Threshold applied directly to the naked signal (<u>no Front-End electronics has been used</u>)

Charges definition

- Avalanche charge: charge integrated over a window of 20 ns
- Total charge: charge integrated over all the time window(200 ns)
- Extra Charge/ streamers: Signals which have a total charge more than 20 pC and a width> 10 ns

Experimental Setup

Measurement Strategy

Starting point

 $HFO/CO_2/i - C_4H_{10}/SF_6=38\%/56\%/5\%/1\%$

- SET (I):Study of the quenching contribution
 - <u>CO₂ and SF₆ constant and HFO/i-Butane variable</u> HFO/CO₂/ $i - C_4H_{10}/SF_6$ =33%/56%/10%/1%

 $HFO/CO_2/i - C_4H_{10}/SF_6{=}29\%/56\%/14\%/1\%$

- > SET (II): Study of the HFO/ CO_2 contribution
 - $i C_4 H_{10}$ and SF_6 constant

 $HFO/CO_2/i - C_4H_{10}/SF_6 = 33\%/61\%/5\%/1\%$ $HFO/CO_2/i - C_4H_{10}/SF_6 = 28\%/66\%/5\%/1\%$

SET I: Efficiency – HFO/i–Butane variable ratio (CO₂ and SF₆ constant)

SET I : Total and Ionic charge – CO_2/SF_6 constant

The underlined points are evaluated at the first point after the knee of the plateau

Università di Roma

The addition of the i-butane gives no benefit to the total charge delivered in the gas

Set II: Efficiency- i-Butane $/SF_6$ constant (5%/1%)

9

Set II: Total and Ionic Charge- i-Butane and SF₆ constant

The underlined points are evaluated at the first point after the knee of the plateau

Ionic Charge vs HV

The addition of the HFO moves the working point to higher voltages, increases the average charge per count but extends the streamer-avalanches separation

New HFO-1233zd – Molecular description and measurement strategy

Set (I) – Efficiency with and without SF6

Set (I) – Charge with and without SF6

Total Charge vs HV

Set (II) – Efficiency with different i-butane percentage

HV Working Point

- Mixture with 5% of i-Butane : 90% at 12.3 kV
- Mixture with 11% of i-Butane : 90% at 12 kV

Set (II) – Charge with different i-butane percentage

At the Working Point the average total prompt charge is **12 pC** for the mixture with 11 % of i-Butane and **5 pC** for the mixture with 5 % of i-Butane At the Working Point the average ionic charge is **40 pC** for the mixture with 5% of i-Butane and **60 pC** for the mixture with 11% of i-Butane

All HFO-1233zd Mixtures- Ionic/Prompt Ratio

- SET (I) shows that the quenching effect is mainly due to HFO
- SET(II) shows that the enhancement of the HFO percentage moves the working point to higher voltages and extends the avalanche-streamer separation

➢ HFO-1233zd

- Possibility to work without SF6
- The quenching power is always dominated by the HFO presence

> Next

• Measurements reducing the HFO fraction

Thank You!

Set (I) – Charge Distribution with and without SF6

