

The BIS78 Resistive Plate Chambers upgrade of the ATLAS Muon Spectrometer for the LHC Run-3

Lorenzo Massa

on behalf of the ATLAS Muon Collaboration

XV Workshop On Resistive Plate Chambers And Related Detectors Roma Tor Vergata 12/02/2020

Summary

- ATLAS Muon Spectrometer
 - Fundamental for ATLAS searches
 - To be upgraded for LHC Run-3 $L = 2 \times 10^{34} cm^{-2} s^{-1}$

- BIS78 Project
 - RPC Production
 - Trigger and DAQ

 $H \rightarrow ZZ \rightarrow 4\mu$ Run Number: 189280, Event Number: 143576946 Date: 2011-09-14, 11:37:11 CET

EtCut>0.3 GeV PtCut>3.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Cells:Tiles, EMC

RPC2020

Lorenzo Massa - BIS78 Project

BATLAS

The ATLAS Muon Spectrometer

- Huge spectrometer
 - 46 m x 25 m
- Muon's trajectory bent by a toroidal magnetic system
 (B ≈ 4T)
- Momentum measured through almost 4000 detectors

- Tracking made with two types of precision detectors
 - Monitored Drift Tubes(MDT)
 - Cathode Strip Chambers (CSC)

RPC2020

- Trigger made with two types of fast detectors
 - Barrel: Resistive Plate Chambers (RPC)
 - EndCap: Thin Gap Chambers (TGC)

ATLAS RPC system

RPCs are responsible for L1 muon trigger in the Barrel |η|<1.05

- Total surface 7000 m²
- About 1000 RPC doublets
- Three concentric stations (RPC doublets)
 - 2 in Barrel Middle BM region
 - 1 in Barrel Outer BO region
 - No RPCs in Barrel Inner BI region, project to install a new layer of RPC for Phase II (see Y. Sun talk)

- Trigger algorithm based on RPC hit coincidence
 - Low- p_T trigger ($p_T < 10$ GeV) uses the BM stations
 - High-p_T trigger (p_T > 10 GeV) requires an additional confirmation on the BO station

RPC2020

BIS78 Upgrade

- The existing 32 BIS7 and BIS8 MDT will be replaced by 16 new muon stations made of:
 - one sMDT BIS7+8 chamber
 - two RPC triplets (BIS7 and BIS8)
 - Selectivity in transition region improved by adding a new trigger layer
- 8 stations for one end cap (side A) to be installed in 2020
- BIS₇8 can be considered as a pilot project for the Phase II BI upgrade.

High trigger rate in $|\eta| > 1$

- High fake trigger rate expected for $|\eta|>1$, due mainly to low- p_T protons generated in toroids and shieldings.
- The rate in forward region (|η|>1.3)
 will be reduced by New Small Wheel
- Half of the rate in the barrel-endcap transition region (1<|η|<1.3) will be reduced by the existing TGCs
- The other half of the fake trigger rate in transition region will be reduced by the BIS₇8 stations

η distribution of muon trigger (p_T >20 GeV)

New generation of RPCs

New Gas Gap

- Thinner gas gap (2 mm \rightarrow 1 mm)
- Thinner electrodes (1.8 mm \rightarrow 1.2 mm)
 - Lower detector weight
 - Thinner supports allowed
 - More efficient signal collection
 - Almost halve the applied HV
 - Improved charge distribution
 - Double time resolution

New Front End Electronics

- New amplifier and discriminator
 - Higher rate capability
 - Radiation hardness
 - Better space-time resolution
 - Inexpensive high performance low power FE
 - More details in L. Pizzimento's talk

Amplifier in Silicon							
Gain	0.2-0.4 mV/fC						
Power Consumption	3-5 V 1–2 mA						
Band width	100 MHz						
Discriminator in SiGe							
Threshold	0.5 mV						
Power Consumption	2-3 V 4-5 mA						
Band width	100 MHz						

New Generation RPCs' Space-Time Resolution: 1 mm x 0.4 ns

Production site at CERN

RPC2020

RPC2020

Gas gap QA/QC

Acceptance test at the production site (General Tecnica)

- Electrode resistivity
- Spacer gluing strength test
- V/A characteristic
- Gas tightness
- HV insulation test

1 week of gamma irradiation at CERN

- Slow turn on at high rate (conditioning): all the gaps have to reach 40 μA in steps of 10 μA, which take around half day each.
- Stability test at HL-LHC like conditions: no change in the V/A characteristics after irradiation

RPC2020

Front End Boards QA/QC

- New FE Boards tested carefully
- Each board tested moving the threshold *Vth* parameter
- For each Vth value, the 8 channel inputs are perturbed with a metal spring probe and the output signals are acquired with a TDC
 - Counts vs Vth
 - Time distributions
 - Time width distributions
- The FE boards fulfill the QA/QC test when all input channels work varying the threshold within a range of at least 200 mV (1.5V ≤ Vth ≤ 1.7 V) and there is no crosstalk
- With these criteria, there is a yield of 90% of accepted boards

Cosmic Ray tests

- All assembled singlets and triplets are tested with cosmic rays.
- Trigger:
 - 2 layers of scintillators (20 cm x 60 cm)
 - 1 singlet at fixed HV as reference
 - coincidence window: 100 ns
- Data acquired with a CAEN TDC (time resolution: 100 ps)
- QA/QC criteria:
 - Efficiency >95%
 - Noise < 1 Hz/cm²
 - Dead channels < 1%
 - Cluster size ≤ 3

RPC2020

Module Zero

- Module Zero integrated with mechanical frame on 8 May 2019.
- Efficiency >95% at 5.8 kV

 No dead channels No interference with sMDT

Efficiency

Tests on triplets

- 3 BIS7 and 3 BIS8 triplets assembled and tested with cosmic rays, confirming the performances of Module Zero
- Efficiency >95% in the plateau region
- The observed performances are uniform in all regions of all the produced triplets
- More details on performances on L.Pizzimento's talk.

5200

5400

5600

5000

4800

hv 14

5800

Chamber Production

Station	Chamber	Gap	Gap	Panels	Singlet	Singlet	Triplet	Triplet	BIS ₇ 8
		produced	Ready	Ready	Assembly	CR Test	Assembly	CR Test	Integration
Mod. o	BIS ₇								
Ao2	BIS ₇								
	BIS8								
Ao4	BIS ₇								
	BIS8								
Аоб	BIS ₇								
	BIS8								
Ao8	BIS ₇								
	BIS8								
A10	BIS ₇								
	BIS8								
A12	BIS ₇								
	BIS8								
A14	BIS ₇								
	BIS8								
A16	BIS ₇								
	BIS8								

- Integration of the BIS78 stations with sMDTs starting in February
- Installation in ATLAS Cavern of the first 8 stations forseen by May-June 2020

BIS78 Trigger and DAQ status

- Work on Trigger and DAQ ongoing, in good shape
- Front End digitization done with HP-TDCs with 3x32 channels, 200 ps time resolution
- PAD Trigger Board hosting one FPGA (Xilinx Kintex 7 family), one GBTx chip and one GBT-SCA chip
- The FPGA trigger algorithm perform a 2/3 majority logic (3 RPC gas gap) to select a muon candidate.
- Data acquisition through FELIX, the standard ATLAS Phase₂ Board
- Prototype version of TDC+PAD+FELIX system tested reading successfully an entirely cabled BIS7 chamber (4 eta + 8 phi FE of all 3 layers) and sending data to Felix at 320 Mb/s

Conclusions

- The BIS₇8 upgrade will provide new integrated sMDT+RPC chambers to be installed in the transition region (1.0<|η|<1.3) as part of the Phase-1 ATLAS Upgrade
- BIS78 stations make use of new generation RPCs, with a better space-time resolution and rate capability with respect to the present ATLAS RPCs
- 6 production triplets have been assembled and tested, showing all an efficiency greater then 95% in the plateau region
- A preliminary version of the TDC+PAD+FELIX system has been tested successfully with a BIS7 triplet
- The installation in the ATLAS cavern of the first 8 BIS78 stations is foreseen by May-June 2020
- The installation of the second 8 BIS78 stations is forseen in LS3