Design and construction of the mechanical structure for thin-gap RPC triplets for the upgrade of the ATLAS muon spectrometer

O. Kortner on behalf of the ATLAS Muon Collaboration

Max-Planck-Institut für Physik, München

12.01.2020

The ATLAS 1st level muon trigger in LHC run I

The muon spectrometer upgrade is a muon trigger upgrade. So let me recall the original muon trigger and its weak points!

- The level-1 high $p_{\rm T}$ muon trigger is built out of a coincindence of three RPCs in the barrel or three TGCs in the big end-cap wheel.
- Muon momentum estimate from the size of the deviation of hits from an infinite momentum track from the interaction point.

Sources of 1st level muon triggers in LHC run I

- Muon trigger rate dominated by fake triggers in the end-caps caused by charged particle not emerging from the interaction point.
- Real muon triggers contaminated with sub- $p_{\rm T}$ -threshold muon due to the reduced momentum resolution caused by the moderate spatial resolution of the trigger chambers.

Muon spectrometer phase-I upgrade (2019-2021)

To reject fake muon triggers at trigger level:

- <u>New small wheel</u> with high-resolution trigger chambers.
- New BIS-78 stations:
 - New thin-gap RPCs trigger chambers.
 - New BIS sMDT precision chambers to free space for the new RPCs.

Muon spectrometer phase-II upgrade (2025-2027)

CERN-LHCC-2017-017; ATLAS-TDR-026

Installation of new sMDT-RPC stations in the barrel inner layer

- to close the acceptance gaps caused by the non-instrumented regions due to toroid and rib structures,
- to recuperate the reduced muon trigger efficiency cause by the reduced efficiency of the present RPCs at high rates.

Installation of new front-end electronics

to cope with the new trigger and read-out scheme.

Challenges for the BI RPC upgrade

Challenging requirement

- Very compact mechanical structure needed to fit into the limited available space.
- Very rigid mechanical structure required in order to avoid conflicts with the sMDT chamber.

Strategy for this presentation: Concentrate on the BIS-78 pilot project in which all challenges of the BI upgrade are present and are addressed.

Requirements/boundary conditions for the BI upgrade

Current ATLAS RPC

- Double-gap structure.
- 50 mm thick honeycomb structure provides mechanical rigidity.
- Height: 92 mm.

New BI RPC

- Triple-gap system.
- Available space: 60 mm.

Development tasks for the new BI RPCs

- Thin RPC singlets which can be assembled without an external Faraday cage.
- Rigid mechanical structure to support the RPC triplet independently of the accompanying sMDT chamber
- Rigid mechanical frame for the RPC singlet which stays within the tight 60 mm envelope including its deformations under gravity.

Structure of an RPC singlet

- RPC singlet inclosed in its own Faraday cage consisting of the copper back plates of the read-out electrodes and an attached lateral copper foil.
- New dielectric, FOREX PVC foam instead of polyester foam in the old RPCs, was chosen to guarantee minimal thickness variations and increased rigidity of the read-out panels.

(In the future the FOREX foam will be replaced by 3 mm thick paper honeycomb.)

Cu fo	bil			
Electrode PCBs		Component	Thickness [mm]	
Dielectric of the read-out panel FOREX plate		Electrode PCB	0.3	
		FOREX plate	3.00±0.25	
Gas gap structure		Gas gap	4.2±0.2	
		PET foil	0.2	
		Cu foil	0.1	
Dielectric of the read–out panel FOREX plate		⇒ Thickness of an RPC singlet: (11.8 ± 0.7) mm		
Electrode PCBs	1		,	

Measurement of the thickness of prototype RPC singlets

Measurement on a granite table

Measurement result

- Maximum thickness in the region of the RPC frame (as expected).
- Outlier at the location of the gas inlet has been avoided for the series chambers by a cut-out in the read-out panels.
- \Rightarrow Maximum singlet thickness compatible with expectations.

Mechanical structure for BIS-78 RPC triplets

- Rigidity of present RPCs achieved by 5 cm thick honeycomb plates.
- \Rightarrow Impossible within 6 cm envelope of BIS-78.

Solution for BIS-78

Measurement of the height of the bottom of the mechanical structure under the load of an RPC triplet

Measurement of the height of the bottom of the mechanical structure under the load of an RPC triplet

RPC support structure

FEA calculation of the deformation of the support structure

- RPC support structure to slide and keep the RPC triplet on rails.
- Deformation of the support structure under the weight of the BIS-78 RPC of 158 kg: 2.2 mm.
- \Rightarrow Acceptable deformation preventing interference with the sMDT chamber and leaving 60 mm for the RPC frame.

Mechanical structure for BIS RPC triplets

- Nominal height: 55.4 mm within 60 mm envelope.
- RPC triplet thickness tolerances of 3x0.7 mm = 2.1 mm.
- Thickness tolerance of the frame plates of $3\times0.3 \text{ mm} = 0.9 \text{ mm}$.
- Total thickness tolerance of 3 mm corresponding to 58.4 mm.
- Sag: 1-2 mm (measured), 2.2 mm (FEA simulation).
- \Rightarrow Design within the 60 mm envelope at the level of \sim 1 mm.

Validation of the mechanical frame

- Crucial for the RPC operation: gap size not decreased due to external mechanical forces between the spacers.
- A decreased gap size would lead to a larger electric field and higher current at the same operating voltage.
- To prove that the gap size is preserved with the present design of the mechanical frame a voltage-current curve was measured under different mechanical stresses.
- \Rightarrow No effect was observed due to the large rigidity of the frame and the force distribution by the aluminium plates!

- The inner layer of the barrel part of the ATLAS muon spectrometer will be instrumented with a triplet of thin-gap RPCs to recuperate the efficiency losses of the present RPC system at the HL-LHC.
- The presence of these RPCs in the small sectors will also close most of the acceptance gaps of the barrel muon trigger raising the acceptance from the current 78% to 95%.
- In order to provide the required space for the RPCs in the small sectors the existing MDT chambers will be replaced by sMDT chambers.
- A mechanical structure for the thin-gap RPC triplets with a height of less than 60 mm and the required mechanical rigidity was successfully designed and produced for the upgrade of the ATLAS muon spectrometer.