XV workshop on Resistive Plate Chambers and Related Detectors (RPC2020) Roma, 10 - 14 February 2020.

Performance of the BIS78 RPC detectors: a new concept of electronics and detector integration for high-rate and fast timing large size RPCs

Luca Pizzimento on behalf of ATLAS collaboration

Luca Pizzimento - lucapizzimento@roma2.infn.it

BIS78 ATLAS RPCs

□ Front-electronics

BIS78 RPCs performance

□ System performance in high-radiation environment

BIS78 RPC production modules

RPC singlet	RPC triplet		ATLAS New generation RPC
		Detector	Mono gas gap
		Gas Gap width	1 mm
		Electrode Thickness	1.2 mm
		Gas Mixture	95% TFE, 4.7% i-C4H10, 0.3% SF6
		Time Resolution	0.4 ns
		Space Resolution	1 mm

RPC rate capability upgrade

The **RPC rate capability** is mainly limited by the current that can be driven by the high resistivity electrodes.

$$V_{gas} = V_a - R \cdot I$$

$$V_{gas} = V_a - \rho \cdot \frac{d}{S} \cdot \langle Q \rangle \cdot S \cdot \Phi_{particles} = V_a - \rho \cdot d \cdot \langle Q \rangle \cdot \Phi_{particles}$$

Reduce the average charge per count Q:

This method is the only one that permits to increase the rate capability while operating the detector at fixed current. **No further ageing test required**

 $\langle Q \rangle$ reduction requirements:

- Very sensitive FE electronics with an excellent signal to noise ratio
- High suppression of the noise induced inside the detector by the electronics and by external sources
- Very careful optimization of the chamber structure as a Faraday cage.

New Front-End electronics

Driverization system

Amplifier parameters

- Silicon standard components
- Gain: 0.2-0.4 mV/fC
- Power consumption: 3-5 V 1–2 mA
- Band-width: 100 MHz

Minimum Threshold of 0.3 mV 1.

2.

Reduction of factor 5-10 in the charge Detectable signal of *1-2 fC* produced inside the gas gap

Time-over-threshold measurement achievable directly within the Front-End

Discriminator

Discriminator parameters

- SiGe full custom
- Power consumption: 2-3 V 4-5 mA
- Threshold: 0.5 mV
- Band-width: 100 MHz

Rate capability up to some kHz/cm²

BIS78 Cosmic Ray performance test

01A

.

• 3 singlets 200 cm x 110 cm

BIS78 RPCs performance – Efficiency

Efficiency curve all over the singlet surface

BIS78 RPCs performance – Efficiency

Efficiency at the knee point (5.5 kV) For each position tested For a better resolution on a possible efficiency variation

The efficiency shows an homogeneous behaviour all over the singlet surface within the statistical fluctuation ($\pm 0.5\%$)

BIS78 RPCs performance – Cluster Size

Chamber top view

1	out	Cluster Size η/φ Position 1 1.26/1.45	Cluster Size η/φ Position 2 1.27/1.46	Cluster Size η/φ Position 3 1.28/1.43	Cluster Size η/φ Position 4 1.24/1.58		
10	η Reado	Cluster Size η / φ Position 5 1.25 / 1.33	Cluster Size η/φ Position 6 1.18/1.37	Cluster Size η / φ Position 7 1.21 / 1.4	Cluster Size η / φ Position 8 1.24 / 1.28		
FU		φ Readout					
	64 <						

Cluster size at the knee point (5.5 kV) For each position tested

Showing the expected CS for a physical induction without crosstalk or self-induced noise effects

BIS78 RPCs performance – Noise

Obtained at HV=5.6 kV

BIS78 RPCs performance – Time Of Flight and Time Walk

Time of Flight method for Time resolution calculation

Time resolution calculated as the sigma of the gaussian fit over the distribution of the difference between the arrival time of the signals of the 2 singlets (Δ T) Time walk effect can be corrected by using the function F(Amplitude), which correlate the time when the signal passes the threshold and its amplitude

BIS78 RPCs performance – Time Over Threshold

Obtained by taking the width of the first signal of each cluster at HV=5.6 kV

η Output Signal Width distribution

BIS78 RPCs performance – Time resolution

Time resolution with time walk correction

Luca Pizzimento - lucapizzimento@roma2.infn.it

BIS78 RPCs performance – Test beam setup

BIS78 RPCs performance – FE thresholds & rate capability

$$I = \langle Q \rangle_{(pC)} \times C_{photons}$$
 (Counts/s)

Considering an average charge per count $\langle Q \rangle$ produced inside the gas of ~ 2pC

Estimation of the rate of converted photons inside the gas ($Rate_E$)

Checking the actual rate of converted photons measured by the FE ($Rate_M$)

$$\mathbf{F}$$
Threshold = 2 pC * $\frac{Rate_E}{Rate_M}$

Expected rate of converted photons inside the detector					
Absorption factor	Current (μA)	Expected rate (Hz/cm^2)			
215	7.5	208.3			
146	11.3	313			
100	14.4	400			
68	21.3	591.6			
46	25.8	716			
22	45.1	1253			
10	77.1	2141			
3.3	210.5	5847.2			
1	329.9	9163.2			

BIS78 RPCs performance – FE thresholds

PRELIMINARY

Conservative Threshold

Front-End threshold on the average charge per count produced inside the detector estimated to be 5±1 pC

Performing Threshold

Front-End threshold on the average charge per count produced inside the detector estimated to be $3\pm1 \text{ pC}$

BIS78 RPCs performance – Rate capability

Conservative Threshold

Luca Pizzimento - lucapizzimento@roma2.infn.it

The new generation of RPC detector equipped with the newly developed Front-End electronics achieved the following:

1. High performance along with huge uniformity

2. Raw time resolution of 400 ps and 330 ps considering the time walk correction

3. Rate capability > 9 kHz/cm²

Thank you !