Performance and aging studies for the ALICE muon RPCs

Luca Quaglia¹ on behalf of the ALICE collaboration And: Roberto Guida², Beatrice Mandelli², Laura Alvigini³

 1 Università degli studi di Torino and INFN Torino

²CERN EP-DT-FS

 3 University of Pavia and IUSS

February 11, 2020

Istituto Nazionale di Fisica Nucleare Sezione di Torino

Luca Quaglia

RPC 2020, Tor Vergata

2 Performance of ALICE MTR during LHC RUN 2

2 Performance of ALICE MTR during LHC RUN 2

- ALICE (A Large Ion Collider Experiment) is one of the four large experiments at the LHC
- It is specialized to study signatures of the Quark Gluon Plasma (QGP) in ultra-relativistic heavy-ion collisions
- The central barrel region covers the pseudo-rapidity interval $|\eta| < 0.9$ while the forward muon spectrometer coverage is $-4 < \eta < -2.5$

The ALICE muon spectrometer in RUN 1-2

- Set of two absorbers to reduce the flux of hadrons in the muon spectrometer
- Tracking chambers to reconstruct muon tracks
- Dipole magnet to bend the muon tracks
- Trigger system (MTR): composed of 4 planes of single-gap RPC detectors, used for online event selection and offline muon identification

- 72 single-gap RPCs organized in two stations with two planes each
- Three different shapes to accommodate the beam pipe:
 - **1** Long: 1 to 3 and 7 to 9
 - 2 Tapered (or cut): 4 and 6
 - Short: 5
- 2 mm gas gap and 2 mm thick bakelite electrodes with low resistivity $(10^9 \div 10^{10} \ \Omega \text{cm})$ with a double linseed oil coating
- $\bullet\,$ Total active area per detection plane $\sim\,5.5~{\rm x}~6.5~{\rm m}^2$
- Operated in maxi-avalanche mode (FEE w/o amplification and low threshold value) with a gas mixture of 89.7% C₂H₂F₄, 10% i-C₄H₁₀ and 0.3% SF₆ with $\sim 37\%$ Relative Humidity (*RH*)
- RPCs are read out on both sides by $\sim 21 \rm k$ electronics channels

2 Performance of ALICE MTR during LHC RUN 2

Running conditions in ALICE during RUN 2

1	2015
	• pp @ $\sqrt{s} = 13$ TeV and pp @ $\sqrt{s} = 5.02$ TeV • Pb-Pb @ $\sqrt{s_{VVV}} = 5.02$ TeV
2	$\sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} $
	• pp $@\sqrt{s} = 13$ TeV
8	• p-Pb @ $\sqrt{s_{NN}} = 5.02$ TeV and $\sqrt{s_{NN}} = 8.16$ TeV 2017
	• pp @ $\sqrt{s} = 13$ TeV
~	• Xe-Xe @ $\sqrt{s} = 5.44$ TeV
•	2018 a pp $@$ $\sqrt{s} = 13$ TeV and pp $@$ $\sqrt{s} = 5$ TeV
	• Pb-Pb @ $\sqrt{s_{NN}} = 5.02$ TeV

Maximum counting rate across all RPCs and all colliding systems ~ 30 Hz/cm²
Tital across del huminarita in across 2

Total recorded luminosity in run 2

- pp @ $\sqrt{s} = 13$ TeV. $\mathcal{L}_{INT} \sim 36 \ pb^{-1}$ and @ $\sqrt{s} = 5.02$ TeV. $\mathcal{L}_{INT} = 1.3 \ pb^{-1}$
- Xe-Xe @ $\sqrt{s} = 5.44$ TeV. $\mathcal{L}_{INT} = 0.3 \ \mu b^{-1}$
- p-Pb @ $\sqrt{s_{NN}} = 5.02$ TeV and $\sqrt{s_{NN}} = 8.16$ TeV. $\mathcal{L}_{INT} = 3 \ nb^{-1}$ and 25 nb^{-1}
- Pb-Pb @ $\sqrt{s_{NN}} = 5.02$ TeV. $\mathcal{L}_{INT} = 800 \ \mu b^{-1}$

Maximum instantaneous luminosity in RUN 2 (Hz/cm^2)		
pp 5.02 TeV	10^{31}	
pp 13 TeV	$5 \cdot 10^{30}$	
p-Pb 5.02, 8.16 TeV	$1.5 \cdot 10^{29}$	
Pb-Pb 5.02 TeV	10^{27}	

- Integrated charge after dark current subtraction
- Three curves for each plane:
 - Black: trend of the average integrated charge
 - Pred: RPC that had collected the maximum integrated charge at the end of run 2
 - **3 Green**: RPC that had collected the minimum integrated charge at the end of run 2
- Aging tests up to 50 $\frac{mC}{cm^2}$ during R&D
- Most exposed gaps for each plane:
 - MT11 ~ 12 $\frac{mC}{cm^2}$ • MT12 ~ 9 $\frac{mC}{cm^2}$ • MT21 ~ 18 $\frac{mC}{cm^2}$
 - (4) MT22 ~ 19 $\frac{mC}{cm^2}$

Efficiency

Date

Date

- Efficiency showed satisfactory results (> 96%) and stability over time for all the chambers during run 2
- Fluctuations are mainly due to local issues (noise in FEE etc.)
- Detector availability 95% throughout run 2 (the ~ 5% inefficiency includes runs when RPCs were kept OFF due to unavailability of tracking chambers)

- Dark current = the current absorbed by the detector when not irradiated
- Same color code as integrated charge
- Increase in the absorbed dark current over time
- Not accompanied by a loss of efficiency
 → causes are under investigation

2 Performance of ALICE MTR during LHC RUN 2

- $\bullet\,$ An increase in the dark current absorbed by the ALICE muon RPC was observed during run 2
- No decrease in detection efficiency
 → no obvious aging effect is observed. Interesting to better understand the causes of the
 dark current increase
- Possible explanation: deposition of fluorinated compounds (e.g. HF) on the inner surfaces of the detectors
- Attempt to study this effect by creating an Ar plasma inside the detectors
 - Study of compounds produced by the interaction of the plasma with the inner surfaces of the detector using a Gas Chromatograph/Mass Spectrometer (GC/MS) and Ion Selective Electrode (ISE) by analyzing the exhaust gas
 - Effect on currents (?)

Experimental technique

- Two chambers were selected for the Ar plasma treatment: MT 22 IN 1 and MT 22 IN 2
- The plasma was created and maintained at different currents
- GC/MS analyses performed to study the presence (and concentration) of new compounds, ISE to measure the F^- ion production
- Periodic resistivity measurements

- $\hfill\square$ When it is fully ionized
 - \rightarrow plasma is created
 - \rightarrow I(V) curve follows Ohm's law

Experimental setup

RPCs with HV ON

Luca Quaglia

RPC 2020, Tor Vergata

- Free charges and photons formed by ion-electron recombinations in the plasma might be sufficiently energetic to detach the fluorinated compounds that have deposited during operation
- An ISE is used to identify the presence of F^- ions in the exiting gas mixture
- It provides a voltage value (mV) converted to concentration (ppm) via a calibration curve
- Integrated measurements were performed
 - \rightarrow gas is bubbled through 33 ml of distilled water and the pH of the solution is buffered with the $TISAB^1~II$ solution
 - \rightarrow the concentration of accumulated F^- ions is measured after a few hours of integration

 $^{^1\}mathrm{TISAB}=$ Total Ionic Strength Adjustment Buffer, used to improve the F^- ions concentration measurements

Correlation between cumulative ${\cal F}^-$ ion production and integrated charge

• Visible correlation between accumulated F^- ions and integrated charge

H2O in OV1

- F^- ions might be produced by the "cleaning" action of the Ar plasma
- Accumulation rate does not seem to slow down up to ~ $2.5 \frac{mC}{cm^2}$ of integrated charge \rightarrow presence of residual fluorinated impurities inside the chambers (?)

Bulk resistivity

- $\bullet\,$ Ar plasma represents a short circuit between the bakelite electrodes \to considered as two series resistors
- Linear fit to the Ohmic part of the I(V) curve provides $\frac{1}{R}$
- Estimate of the bulk resistivity as:

$$\overline{\rho} = \frac{RS}{2l} \tag{1}$$

where $\overline{\rho}$ is the mean resistivity, S is the RPC surface (270x70 cm²) and l is the electrode thickness (2 mm)

• The values of resistivity are corrected for temperature effects

Bulk resistivity trend

- Bulk resistivity increases as the integrated charge increases
- Probably due to a drying effect of the plasma on the bakelite

$\rm CO_2$ production

• GC/MS analyses showed the presence of an impurity when the plasma is created (HV ON)

• Impurity identified as CO_2 thanks to the mass spectrometer (MS)

Correlation between applied current and CO_2

- If the current is increased \rightarrow the CO_2 concentration increases
- Time lag between current increase and CO_2 observation ~ 30 min

• A strong correlation between the applied current and the CO_2 concentration (given by the area under the peak in the chromatogram, measured in μV^*s) is observed

Dark current comparison

- Some RPCs were flushed with Ar but the HV was kept OFF (no plasma was created) and some were kept as a reference (not flushed with argon at all)
- Plot of the quantity $\Delta I =$ current after the test current before the test, with the ALICE standard gas mixture for all the chambers flushed with Ar

• No significant effect on the absorbed current is observed, either in the chambers treated with Ar plasma or the ones left untouched

2 Performance of ALICE MTR during LHC RUN 2

- The ALICE muon RPCs have shown satisfactory results during run 2:
- Efficiency was stable over time and was typically >96%
- Some of the chambers have collected a significant amount of charge wrt to the certified lifetime and may have to be replaced² before run 3
- An increase in the absorbed dark current was observed
- An Ar plasma test was carried out on the ALICE muon RPCs in order to gain more insights into such an increase:
 - **()** The production of F^- ions was observed in the exiting gas mixture
 - 2 An increase in the bulk resistivity was observed during these tests
 - 0 The production of CO_2 correlated with the circulating current was observed
 - O No significant effect on the dark current at the working point is observed
- Investigation ongoing to find possible explanations for the observed effects

²See Livia Terlizzi's talk today @ 14:20

Resistivity increase

• Another observation that can point to a resistivity increase is the following:

- Keeping the HV constant, the current steadily decreases over time
- The current steps correspond to a manual raise in the HV

• Va'vra proposed a conduction model in linseed oil³ based on ionic current

Conduction in linseed oil

- Linseed oil is a very complicated substance, composed of various fatty acids
- When polymerized, the fatty acids can be described as R-COOH where *R* is a complicated carbon-based chain and "-COOH" is a carboxyl group
- The mechanism works as follows: R-COOH molecules break into R-COO⁻ and H⁺:

R-COOH + $\Delta V \longrightarrow R$ -COO⁻ + H^+

• The R-COO⁻ might react with water to recreate R-COOH and OH⁻:

 $R-COO^- + H_2O \longrightarrow R-COOH + OH^-$

• R-COOH returns the fatty acid and OH^- delivers the charge to the anode and H^+ delivers the charge to the cathode, forming H_2 and escaping near the cathode

 $2OH \longrightarrow H_2O + 2O$

• Lastly, $2O \rightarrow O_2$ and it delivers oxygen near the anode

 $^{^3 \}rm J.$ Va'vra, "Physics and chemistry of aging–early developments" in Nuclear Instruments and Methods in Physics Research A 515 (2003) 1–14

- The key element in the previous reaction is water
- The conduction of current "consumes" the water in the linseed oil \rightarrow This could explain the observed resistivity increase
- Note that, due to the high circulating current, many R-COO⁻ molecules are formed. In this situation, the Kolbe electrolysis⁴ could also be taking place:

$$2RCOO^{-} \xrightarrow{-2e^{-}} R-R$$

- Va'vra observed the presence of gas bubbles in his tests \rightarrow Might be oxygen and hydrogen
- $\bullet\,$ If this model was correct, it could explain both the resistivity increase and the $\rm CO_2$ production

 $^{{}^{4} \}tt{https://www.organic-chemistry.org/namedreactions/kolbe-electrolysis.shtm}$