

UNIVERSITÀ DEGLI STUDI DI TORINO

Environment-friendly gas mixtures for Resistive Plate Chambers: an experimental and simulation study

A. Bianchi^{*}, S. Delsanto, P. Dupieux, A. Ferretti, M. Gagliardi, B. Joly, S. P. Manen, M. Marchisone, L. Micheletti, L. Quaglia, A. Rosano, L. Terlizzi and E. Vercellin

*INFN and University of Torino | antonio.bianchi@unito.it

RPC2020

Roma — 12th February 2020

Outline

• Search of environment-friendly gas mixture

- experimental approach
- simulation approach

R&D studies on ALICE muon RPCs

"I want Europe to become the first climate-neutral continent in the world by 2050" Ursula von der Leyen — European Commission

Home > Strategy > Priorities > A European Green Deal

A European Green Deal

Striving to be the first climate-neutral continent

- Recent European regulations have imposed the reduction of the emissions of fluorinated greenhouse gases (e.g. $C_2H_2F_4$) since January 2015
- CERN has elaborated a number of strategies to reduce greenhouse gas emissions

Motivation for R&D studies on a new gas mixture for RPCs:

- reduce greenhouse gas emissions in the atmosphere
- cost saving: $C_2H_2F_4$ is being phased out by EU regulations \rightarrow limited future availability and possible rise of prices in the coming years

Properties of C₃H₂F₄

95% of the total GWP of the RPC mixture is due to the presence of $C_2H_2F_4$, therefore:

Some references: M. Abbrescia *et al* 2016 *JINST* **11** P08019 R. Guida *et al* 2016 *JINST* **11** C07016 B. Liberti *et al* 2016 *JINST* **11** C09012 A. Bianchi 2019 *JINST* **14** C09003

Tetrafluoropropene C₃H₂F₄ (HFO1234ze(E)):

- HFO1234ze(E) is not flammable at room temperature and its GWP = 7*
- Products of the atmospheric oxidation of HFO1234ze(E) have negligible environmental impact
 - \rightarrow Javadi, M. S., et al., Atmospheric Chemistry and Physics, 2008
- $N_p = \sim 90/cm$ and $E_{ion} = \sim 9 eV$
 - → simulation by Saviano, G., et al., JINST 13.03, 2018
- the strong electron attachment makes C₃H₂F₄ a promising gas for electric insulation
 - → Rabie M., et al., *Environmental science & technology* 52.2, 2018

```
*5<sup>th</sup> Intergovernmental Panel on Climate Change (IPCC)
has revised this value: GWP < 1
```

Effective ionization rate coefficient as a function of the reduced electric field:

Pressure dependence of k_{eff} is a typical indication of three-body attachment

Experimental set-up

R&D studies on eco-friendly gas mixtures:

- small-size (50 x 50 x 0.2 cm³) RPC inside a Faraday cage
- trigger: three scintillators coupled with photomultipliers
- HV is applied with temperature and pressure correction (p₀ = 1000 mbar and T₀ = 20 °C)
- possibility to mix at maximum 4 different gases with H_2O vapor
- signals in read-out strips (2 x 50 cm²) discriminated by FEERIC front-end electronics and acquired by oscilloscope
- FEERIC amplifies signals (input charge range = 0.1÷1 pC)

Dupieux P. et al., Upgrade of the ALICE muon trigger electronics, JINST 9.09 (2014)

total trigger area: ~6 x 6 cm²

Antonio Bianchi

Characterization with ALICE mixture

Efficiency and large signal probability with ALICE mixture, which is used as reference:

Thresholds used for the analysis:

• efficiency (FEERIC response):

```
Q<sub>induced</sub> = ~130 fC (70 mV after amplification)
```

• streamer probability:

amplitude (by the oscilloscope) > 18 mV (threshold used to tag 5% largest signals)

The new gas mixture with low GWP has to provide similar detector performance as the current one with the standard ALICE mixture

Systematic study: gas mixtures with $C_3H_2F_4$ and CO_2 has been carried out with the addition of *i*- C_4H_{10} and SF_6 Methodology: changing the fractions of **two gas components out of four** at a time, evaluating how their ratio affects the performance of the RPC \rightarrow paper: A. Bianchi *et al.* 2019 *JINST* **14** P11014

Ratio between C₃H₂F₄ and CO₂/*i*-C₄H₁₀

Ratio between CO₂ and *i*-C₄H₁₀

Antonio Bianchi

Variation of SF₆

A small variation on the concentration of SF₆ leads to an important effect on the working point: the shift of the working point is ~500 V from 0.3% to 1.0% SF_6

No significant variations in the streamer probability are observed if SF₆ is increased from 0.3% to 0.6%, while the suppression of streamers is slightly higher with 1.0% SF₆

Promising gas mixtures with low GWP

Mixture C₂H₂F₄/iC₄H₁₀/SF₆ (89.7/10.0/0.3):

- efficiency
- \odot streamer probability

Mixture CO₂/C₃H₂F₄/iC₄H₁₀/SF₆ (50.0/39.7/10.0/0.3):

- efficiency
- streamer probability

Mixture CO₂/C₃H₂F₄/iC₄H₁₀/SF₆ (50.0/39.0/10.0/1.0):

- efficiency
- streamer probability

50% CO₂, 39.7% C₃H₂F₄, 10% *i***-C₄H₁₀, 0.3% SF₆:**

- GWP: 72 (~20 times lower than the GWP of ALICE mixture)
- the working point is quite close to the working point of the ALICE RPCs during LHC Run 1 and Run 2 (~1.0 kV)
- the streamer probability is not as low as in the current ALICE mixture

50% CO₂, 39% C₃H₂F₄, 10% *i***-C₄H₁₀, 1% SF₆:**

- GWP: 232 (~5 times lower than the GWP of ALICE mixture)
- the working point is higher (~1.5 kV)
- the streamer probability is similar to the ALICE mixture, although slightly higher
- \rightarrow in both cases, values of cluster size are similar to those obtained with the ALICE mixture
- → more details in A. Bianchi *et al.* 2019 *JINST* **14** P11014

Simulations of RPC performance

Reliable simulations of electron transport parameters in C₃H₂F₄-based gas mixtures turn out to be extremely useful to optimize the RPC performance, but also for:

- different experiments with different operational conditions (ATLAS/CMS or ALICE)
- different types of RPCs (different gas gap width, multi-gap, etc.)
- different types of gaseous detectors (i.e. GEM)

REFF simulation

The REFF (<u>RPC EFF</u>iciency) simulation implements a simplified method to evaluate the efficiency curve of RPCs with different gas mixtures

At the moment, no implementation of space charge effects.

Results of REFF simulation

Variation of the ratio between C₃H₂F₄ and CO₂ without *i*-C₄H₁₀ and with 20% *i*-C₄H₁₀:

Variation of the ratio between CO₂ and *i*-C₄H₁₀ while C₃H₂F₄ fraction is kept constant at 45%:

Results of REFF simulation

Variation of the ratio between CO₂ and **Ar** with 45% $C_3H_2F_4$ and 5% *i*-C₄H₁₀:

Limitations of REFF simulation

Gas mixtures with C₃H₂F₄ and CO₂ at same concentrations with and without SF₆:

Some limitations of REFF simulation have been found in presence of SF₆. Possible future improvements:

- other different sets of cross sections of SF_6 can be tested for the simulation
 - → for now, MAGBOLTZ database is used
- space-charge effects are not still implemented in the simulation (C. Lippmann's approach or FEM)

Finite element method (ANSYS)

Conclusions and outlook

R&D on eco-friendly gas mixtures:

- → goal: to have a eco-friendly gas mixture (at least with a low GWP)
- \rightarrow C₃H₂F₄ is a possible candidate to substitute C₂H₂F₄, thanks to its low GWP

Characterization of mixtures with C₃H₂F₄:

- strong dependence between the working point of the detector and the concentration of C₃H₂F₄
- direct replacement of C₂H₂F₄ with C₃H₂F₄ is not suitable (working point > 14 kV) → the addition of CO₂ to C₃H₂F₄-based gas mixtures is required to operate at lower voltages
- promising C₃H₂F₄/CO₂-based mixtures with *i*-C₄H₁₀ and SF₆:
 GWP reduced by a factor 5-20

Simulation of RPC efficiency:

- reliable predictions of the RPC efficiency in C₃H₂F₄-based gas mixtures with the addition of *i*-C₄H₁₀, CO₂, O₂, Ar, He
- some limitations have been found for C₃H₂F₄-based gas mixtures with the addition of SF₆
- future developments of the REFF simulation, including space charge effects, could improve the agreement between experimental data and simulation results

Journal of Instrumentation

Characterization of tetrafluoropropene-based gas mixtures for the Resistive Plate Chambers of the ALICE muon spectrometer

A. Bianchi^a, S. Delsanto^a, P. Dupieux^b, A. Ferretti^a, M. Gagliardi^a, B. Joly^b, S.P. Manen^b, M. Marchisone^c, L. Micheletti^a, A. Rosano^a and E. Vercellin^a

Hide full author list

Published 12 November 2019 $\,\bullet\,$ © 2019 IOP Publishing Ltd and Sissa Medialab