

Precise investigations of gas parameters in timing RPC with laser test facility

X. Fan L. Naumann

XV Workshop on Resistive Plate Chambers and Related Detectors

Outline

- Introduction
- HZDR laser test facility
- Experiment on RPC detectors
- Summary

Introduction

HZDR Laser Test Facility

- Table-size, multi-purpose test facility;
- Focused UV laser to ignite primary electrons;
- High precision moving system, remote automatic DAQ system.

Introduction

Main activities

Introduction

R&D milestones

- Development since 2013;
- Reported in three RPC workshops;
- R&D procedure finished, <u>eco-gas test</u> on the way.

Concepts & Motivation

Concepts:

- Laser ionizations have fixed positions;
- MPI (Multi-Photon Ionization) effect produces very tiny ionization volume;
- Gas parameters can be measured.
- Motivations:
 - Direct measurement of gas parameters in **timing RPC** (i.e. MRPC);
 - Investigations of RPC performance;
 - Research for **new eco-gases**.

Laser ionization

Laser intensity distribution

Controlled UV laser pulses:

257 nm wavelength, short pulse duration (2 ps), adjustable laser intensities and repetition rates.

• Tiny laser focus:

radius: ~5 μ m, length: ~500 μ m (FWHM)

Tiny ionization volume:

ionization volume is within laser focus.

Laser Test Facility

Realistic RPC prototype

RPC prototype:

Gas gap width: 500 μm in experiments; 300, 500 and 1000 μm possible.

Materials of electrodes: Low resistivity ceramic or float glass.

Precise position stage:

3 dimensions, accuracy on the order of 1 $\mu m.$

Automatic DAQ & Analysis

- Automatic programmed experiments:
 - Remote control;
 - Pre-program & Execute;
 - Off-line data analysis.

RPC gas parameters

 The gas parameters for avalanche developments:

 α_{eff} : Effective Townsend coefficient ν_{drift} : Electron drift velocity N_e : Number of electrons N_0 : Number of primary electrons

- The 'puzzle' of α_{eff} at the region of strong field:
 - Simulated α_{eff} is taken from low pressure & reduced electric field[1]. $\alpha_{eff}/p = A e^{-B/(E/p)}$
 - Simulated α_{eff} is much larger compared to real RPC at timing RPC electric field[2,3].

[1]G. Brunner. NIM, 154(1):159–163, 1978
[2]W. Riegler and C. Lippmann, NIMA, 518(1-2):86–90, 2004.
[3]L. Naumann, M. Siebold, M. Kaspar, et al. JINST, 9(10):C10009, 2014.

An overview of RPC experiments

RPC set-ups:	Trigger RPC	Beyond trigger RPC	Timing RPC	
Field strengths:	~50 kV/cm	50-90 kV/cm	~100 kV/cm	
Gas mixtures:	94.7% Freon 5% iso-Butane 0.3% SF6	Both gas mixtures ↔	85% Freon 5% iso-Butane 10% SF6	

Description:

- Start with the values that are <u>well-known</u> and <u>well-measured</u> to verify the overall availability of the system.
- To explore RPC performance at higher electric fields.
- R&D to prepare for experiments for timing RPC.
- Using both gases.

- Work in realistic timing RPC conditions to measure the gas parameters.
- <u>First measurement of</u> gas parameters at atmospheric pressure at this region.

Field reduction measurements

- Dependence of laser repetition rate on the measured α_{eff} observed for glass electrodes.
- Explains the field reduction and recovery.

Field reduction due to avalanches

• The first direct observation of the tiny size of avalanches:

RPC with glass electrodes: •Time constant : $\tau \sim \rho_0 \epsilon_0 \epsilon_r \sim \text{some seconds}$ •Typical rate capability: ~1 kHz/cm²

 \Rightarrow Estimated area in the order of several μ m².

• Comparison to low resistivity electrodes:

Material	Bulk resistivity	Rate capability in RPC	Time constant	Experiment al rate capability
Glass	~10 ¹² Ω·cm	~kHz/cm²	~ s	3 s
Ceramic	~10 ⁹ Ω∙cm	hundreds kHz/cm ²	~ ms	<< 0.1 s

Measurement of v_{drift}

Measurement of α_{eff}

• First measurement of α_{eff} above 60 kV/cm, up to timing RPC region.

Measurement of α_{eff}

Compared to measurement results from:

- [1] W. Riegler, et al., NIMA. A 500 (2003) 144.
- [2] G. Chiodini et al., NIMA. 602 (2009) 757.
- [3] J. de Urquijo et al., Eur. Phys. J. D 51 (2009) 241.

(1) α_{eff} in agreement with both experiment and simulation, at the field strength of around 50 kV/cm.

(2) α_{eff} begins to separate with simulation, when the field is increased above 60 kV/cm.

Measurement of α_{eff}

Compared to measurement results from:

- [1] W. Riegler, et al., NIMA. A 500 (2003) 144.
- [2] G. Chiodini et al., NIMA. 602 (2009) 757.
- [3] J. de Urquijo et al., Eur. Phys. J. D 51 (2009) 241.

(3) α_{eff} measured for timing RPC field (around 100 kV/cm) is ~2 times less than prediction from reduced pressure.

(4) α_{eff} seem to reach a plateau for timing RPC field (around 100 kV/cm).

(5) α_{eff} is not affected by electrode material.

Conclusions & Outlook

- Laser Test Facility
 - Characteristics
 - Methods

Direct measurements of RPC gas parameters:

- Field reduction range. (Proved the RPC principle.)
- Electron drift velocity. (Agreement with simulation.)
- Eff. Townsend coefficient. (Agreement & differences with simulation.)
- Outlook:
 - Investigations for gaseous detectors with complicated geometry;
 - Investigations for new gases: HFO mixture.

RPC 2020 ROME

Thank you!

End of Presentation