XV WORKSHOP ON RESISTIVE PLATE CHAMBERS AND RELATED DETECTORS RPC2020

USE OF THE EEE MRPC TELESCOPES TO INVESTIGATE POSSIBLE INSTABILITIES OF CIVIL STRUCTURES ON A LONG TIME-SCALE

Chiara Pinto* for the EEE Collaboration

*Centro Fermi, Rome; University and INFN, Catania

STORICO DELLA FISICA E CENTRO STUDI E RICERCHE ENRICO FERMI

Applications of secondary cosmic rays

MUON ABSORPTION

Vulcanology
Underground measurements
Archaelogy

MUON SCATTERING

Homeland security
Safety – Nuclear reactor and waste

→ Long term building stability monitoring

Cosmic muons as a tool to monitor the stability of civil structures on a long-time scale

Depend on: capability of the main tracking detector, geometry and position of the additional detectors, constant response of detectors, **PERFORMANCE** acquisition time,...

Experimental setup to monitor the building stability

In Catania \rightarrow 2 experimental setup to test the possibility of monitoring the long term building stability

EEE Telescopes

Extreme Energy Events Project: collaboration of Centro Fermi, INFN, CERN & MIUR.

- 53 telescopes in high schools
- 2 telescopes at CERN
- 4 at INFN Sections
- Total: 59 telescopes
- (+50 institutes on the waiting list)

It aims at the detection of cosmic ray muons by means of a *sparse array of telescopes,* distributed all over the Italian territory.

See talks by F. Coccetti, G. Mandaglio & M.P. Panetta

Network of telescopes based on Multi-gap Resistive Plate Chambers (MRPC)

EEE Telescopes

- Reasonable cost
- Long term operation required
- Reconstruction of muon
 orientation
- TOF measurements

Chambers filled with a gas mixture 98% / 2% of Freon and SF₆, at a continuous flow of 1-2 I/h and atmospheric pressure

Pickup electrode strip

Cathode (HV-)

resistive paint

6 gas gaps

(300 µm)

resistive paint

Anode (HV+)

INNER STRUCTURE

2 ext. glasses

(1.9 mm)

Vetronite

5 int. glasses

(1.1 mm)

Vetronite

Pickup electrode strip

spacers

EEE Telescopes

PERFORMANCE OF THE MRPCs:

- Time Resolution ~ 240 ps
- Longitudinal Spatial Resolution ~ 1.5 cm
- Transverse Spatial Resolution ~ 0.9 cm
- Average efficiency telescope network

~ 93 %

- Trigger logic: six-fold coincidence of the OR signals from the FEA cards (→ triple coincidence of both ends of the chambers)
- Synchronization guaranteed by a GPS unit that provides the event time stamp with precision of ≈ 40 ns

M. Abbrescia *et al* 2018 *JINST* **13** P08026

POLAR detector

Polar is one of the three detectors of the PolarquEEEst project by Centro Fermi

Assembled at CERN by high school students

- 2 Plastic scintillator planes
- Distance between planes: 11 cm
- 4 Tiles for each plane: 30 cm x 20 cm
- 2 SiPMs per tile (16 SiPMs in total)

POLAR detector

Una nuova installazione alle Svalbard per la misura dei raggi cosmici / A new setup at Svalbard to measure cosmic rays

Polar QuEEEst 2019

Ny Alesund

✓ Nanuq✓ Genova

- ✓ Vigna di Valle (Rome)
 - ✓ Cosenza
 - ✓ Messina
 - 🗸 Cefalù (Palermo)
 - ✓ Erice (Trapani)
 - 🗸 Catania-Etna
 - / Lampedusa
 - ✓ Bologna
 - ✓ Munich
 - ✓ Hannover
 - ✓ Frankfurt amMain

POLAR started its trip in Ny Alesund and for some time stopped in Catania

Catania

CENTRO FERMI Junio formini ENTRO STUDI E RICERCHE ENTRO STUDI E RICERCHE

Extreme Energy Events

1st experimental setup @ DFA- UniCT

Commissioning measurements

4000 3500

3000

2500

2000

1500

1000F

500 F

-4000 -3000 -2000 -1000

0

Same muons passing through both detectors.

Inside the acceptance cone: ~ 47 days data acquisition in total

Coincidence:

600 ns time

window

- The track orientation (θ,φ) as reconstructed by the MRPC EEE telescope — is considered
- These distributions depend on the relative position of the movable scintillator w.r.t. the EEE telescope

1000 2000 3000 4000

Time difference CATA-01 - POLA-01 (ns)

M. Abbrescia et al 2019 JINST 14 P06035

The scintillator was moved to mimic the building shift

Four sets of measurements:

• Reference -> 0 cm

The scintillator was moved to mimic the building shift

Four sets of measurements:

- Reference -> 0 cm
- First shift -> 5 cm

The scintillator was moved to mimic the building shift

Four sets of measurements:

- Reference -> 0 cm
- First shift -> 5 cm
- Second shift -> 10 cm

The scintillator was moved to mimic the building shift

Four sets of measurements:

- Reference -> 0 cm
- First shift -> 5 cm
- Second shift -> 10 cm
- Third shift -> 20 cm

Gaussian fit			
x [cm]	$< \theta > \pm \Delta < \theta >$	< φ > ± Δ<φ>	
0	31.03° ± 0.05°	216.39° ± 0.16°	
+5	31.18° ± 0.07°	215.88° ± 0.33°	
+10	31.36° ± 0.08°	215.98° ± 0.30°	
+20	31.45° ± 0.06°	215,67° ± 0.20°	

Shift of the average direction in space

Estimation of the average direction in space, summing on all the tracks, in 3 configurations (5 cm, 10 cm, 20 cm).

Relative distance	Relative angle shift
20 cm	0.44°± 0.12
10 cm	0.24°± 0.12
5 cm	0.31° ± 0.16
	`

5 cm measurement has a very short statistics – just 4 days

Geometrical simulations

Going closer to the vertical of the reference detector the sensitivity increases

Effect of relative position

Relative horizontal distance between detectors	Acquisition time	# events	
9,3 m	$\sim 7 \cdot 10^5 s$	757	
2,5 m	$\sim 6 \cdot 10^5 s$	4305	

Performance of the method at 2.5 m:
➢ few cm in 1 week data taking

More commissioning measurements were performed

- POLA-01 was moved closer to the vertical of CATA-01
- Statistics increased by a factor ~ 7, in agreement with MC simulations.

To further investigate this possibility we arranged a second experimental setup, along the vertical direction of the EEE MRPC telescope

2nd experimental setup @ DFA- UniCT

Scintillator module

Electronics and data acquisition

Four sets of measurements:

• Reference -> 0 cm

Four sets of measurements:

- Reference -> 0 cm
- First shift -> 5 cm

•

Four sets of measurements: Δx [cm] Reference -> 0 cm First shift -> 5 cm 20 Second shift -> 10 cm scintillator telescope ∆y [cm] 20 10 5 0

3D shifts

Each of the three shifts allows to get closer to the vertical of the reference detector

Position (x,y)	3D shift	
(0 cm, 5 cm)	0.334° ± 0.21°	
(0 cm, 10 cm)	0.523° ± 0.22°	
(20 cm, 20 cm)	2.060° ± 0.21°	

To estimate the *uncertainty in the relative angle*:

- split the overall set of tracks in 2 subsets
- evaluate their average direction
- generate a large number of subsets

Conclusions & Outlook

- Coincidence measurements between MRPC EEE telescope & additional detectors were carried out to test the possibility of monitoring the long term building stability
- The additional detector is moved in order to mimic possible deformations of the building
- ➤The sensitivity of the method depends on: capabilities of the main tracking detector, geometry and position of the additional detectors, uniformity over time of detectors response, acquisition time, ...
- Performance of the method can be estimated of the order of few cm in 1 week data taking

BACKUP

20 cm shift

x [cm]	$< \theta > \pm \Delta < \theta >$	< φ > ± Δ<φ>
0	31.03° ± 0.05°	216.43° ± 0.20°
+20	31.45° ± 0.06°	216.23° ± 0.32°

10 cm shift

x [cm]	$< \theta > \pm \Delta < \theta >$	< φ > ± Δ<φ>
0	31.03° ± 0.05°	216.43° ± 0.20°
+10	31.36° ± 0.08°	216.15° ± 0.29°

5 cm shift

x [cm]	$< \theta > \pm \Delta < \theta >$	< φ > ± Δ<φ>
0	31.03° ± 0.05°	216.43° ± 0.20°
+5	31.18° ± 0.07°	215.88° ± 0.33°

Coincidence measurements

\rightarrow Two detectors working separately

→Coincidence measurement selected using the GPS information in a 600 ns time interval

3D shifts error estimation

To estimate the *uncertainty in the relative angle*:

- split the overall set of tracks in 2 subsets
- evaluate their average direction
- generate a large number of subsets
- distribution of these differences

3D shifts

Position (x,y)	3D θ	3D ф	3D error
(0 cm, 0 cm)	5.926	47.892	0.16
(0 cm, 5 cm)	5.638	49.564	0.13
(0 cm, 10 cm)	5.635	43.573	0.16
(20 cm, 20 cm)	3.901	52.422	0.13

GEANT3 Simulations

- →Evaluation of multiple scattering effect due to the interposed material between the two detectors
- \rightarrow 60 cm of concrete-equivalent solid for the 4 layers

→For *p* around 3-4 GeV/c → 0.1°-0.2° comparable to the observed uncertainty

