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Muon Tomography

Incoming muons (from natural cosmic rays)
n 1 '\

Radiographic imaging with cosmic-ray muons

espite its enormous success, X-ray
radiography’ has its limitations: an
inability to penetrate dense ohjects, !

the need for multiple projections to resolve = \
three-dimensional structure, and health g5 \
risks from radiation. Here we show that = \\ :
natural background muons, which are 3
-~ o @

aenerted by e and are highi 7
generated by cosmic rays and are highly BT 00: © ok i
penetrating, can be used for radiographic & plana (rad)
imaging of medium-to-large, dense objects,

without these limitations and with a i sl
reasonably short exposure time. This inex Experimant Simulation

pensive and harmless technique may offer a
Nature, 2003, 422(6929): 277.

v No artificial radiation
The flux is about 1/cm?-min

v No radiation damage
Only electromagnetic effect, no nuclear effect

v’ Strong penetration
Energy distribution in the distribution of 0.1-
1000GeV, the average energy of 3-4GeV

units

Frequency

muon absorption imaging
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Gas channel connection

MRPC applicable fine-fine
encoding readout

@ 6 groups of detectors, can realize the 2D readout.

v’ 2 cm lead gets imaging result “THU”.

v" the 10 mm line pairs can be distinguished.

v the tungsten cube can be identified while the aluminum cube is invisible due
to its small density.
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How to improve the MRPC detectors and the system?
1. MRPC Geometry:
Smaller strip pitch (2.54 mm)

2. Electronics and read out system:
Higher signal-to-noise ratio

3. Position reconstruction algorithms:
Center of gravity method

New algorithm ---- neural network!

Charge distributed Position
across the strips * nl\eltevl\J/{)a:L predicted
(input) (output)

Simulation data used for training, experiment data for testing



MRPC simulation i

Design a MRPC

Shoot a particle

Simulate the primary energy
deposition with PAI model

Digitize the charge of
the avalanche

Original current signal

Electronics

0 MRPC structure

v Materials

v’ Gap/glass thickness, stack/gap number

v Gas: 90% C,H,F, + 5% i-C,H,, + 5% SF,
[ Particle source

v' perpendicular to the MRPC

0 PAI model is used to simulating the primary

energy deposition®, rather than Emstardard

‘W. Allison. Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.
2018 JINST 13 P09007.
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Design a MRPC [ Primary energy loss

v" Ionize electron-ion pairs
Shoot a particle W Y

O Avalanche multiplication — Townsend effect

Simulate the primary energy _ .
deposition with PAl model %: Townsend costclent

[: Attachment coefficient (by Magboltz)

Digitize the charge of O Electrons drifting in the electric field: induce a

the avalanche signal on the read out strips
0 "Ramo theory:
. . . EW D
Original current signal i(t) = 3 eoN ()
w

: ’S. Ramo, Currents induced by electron motion, Proc. IRE 27
Electronics (1939) 584.
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Werner Riegler, Christian Lippmann. Nucl.
Instrum. Meth. A 500 (2003) 144.

O Include the Front-end electronics response by convolving the original current

O Space charge effect: ~107 electrons

with a simplified FEE response function:
f(t) = A(e V™1 — e~t/72)

O Noise: by adding a random number sampled from Gauss(0, ) to every time bin

Current with time Response Current with time

\Threshold = 2.00, Nosie = 2.00
imet1 =0.45,12 = 4.06 ns
leading length = 521.44 ps
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Particle inject

1.44mm

1.1mm

The second strip on the left The first strip on the left The central strip The first strip on the right The second sfrip on the right

TR ETTRI ITETIRTTR FRTTA P T PTTR [RTTA TR [

0 10 20 30 40 50 60 70 80 @

Time/100ps.

» Induced signals generated by the energy deposition of all sensitive areas
» Induced signals on each readout electrode

» Information about time, charge, cluster size......

» Position resolution
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Center of gravity (COG) algorithm

v' Extremely widespread in scientific and
practical applications.

v' But introduces a systematic error
(discretization error) due to its origin
in the discretization of the signal
collection.

v The COG of ¢(x):
4+ o0
Xg = j xp(x)dx

Xg = Znan_(:)nr / Znan (¢)

(¢ the impact point)
xg(e) =x5==
N EDE
+EZ 7 sin(2rke/T)P 21k /7T)

Machine learning algorithms

v Acquire knowledge from the data
through feature extraction and
representation learning

v Deep neural networks are one of
the most important machine
learning algorithms

v" Solve problems with significant
nonlinearities

v Widely used in high energy
physics

Gregorio Landi. Nucl. Instrum. Meth. A
485 (2002) 698.

—> The systematic error
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Fully connected neural network(DNN)

Fi(Z) = h()_(@5g(--9(Q_(wing(Y_(whm +xR)- +x;) +x5)
k l

Output J Input
‘ ‘ m Activation function: g and h —tanh
v
72X

'\ m Weights: w‘]:l---, XD’l"'
' m “Dropout”: avoid overfitting

\4
> (“‘4
I\

@
e

AN
)‘\“'// tput layer 1
input layer — —
hidden layer 1 hidden layer 2 The incident position of the
[ particle
RRNNR T flow & GPU: GTX 1080 Ti
The charge distributed across copliow !

several strips B 8 layers: ~ 90 mins for training
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Particle inject
1.44mm

1.1mm >
0 1.27 2.54

Training data: one strip pitch, 70000 simulation events
Evaluating data: position scan (0~1.27mm), 3000 simulation events/each
Testing data: X-ray experiment data
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Center of gravity (COG) VS Neural network
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X-ray Experiment e

= — Mylar
—— 1 ' Ccarbon film
(0.25mm)
] . Honeycomb panel Inner gIEISS SIZle 420*420mm2
| 2N Outer glass size A70*470mm?
Electrode glass Inner glass Seal) bar PCB Board B;)It .
, ,‘ Glass thickness 0.7mm
| y _
Gas gap thickness 0.25mm
Number of gas gaps 5
X dimension
T PCB size 500*500mm?
Y dimension

N eadout strips Sensitive area 420*420mm?2



126um slit

Digitizer module (DT5742)
to record the signals
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_ 300
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The number of strips used  Mean/mm Sigma/um  Mean/mm  Sigma/um
to reconstruct the position

4 0.412 416.9 0.819 301.2
5 -0.222 670.2 0.838 286.5
6 -0.07 700.2 0.841 274.4
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B Detailed simulation of MRPC detectors based on Geant4 has
been introduced.

v' Signal, charge, position, time, cluster size......

B A neural network based algorithm has been developed to
reconstruct the position of MRPC detectors.

v No systematic error

v" Position resolution much improved

M It is really hopeful for the implementation of neural networks in
analyzing the position detected by MRPC.
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Thank you for your attention!



