The CEE-eTOF wall constructed with new sealed MRPC

Botan Wang, Dong Han, Yi Wang, Xiaolong Chen

Key Laboratory of Particle and Radiation Imaging, Department of Engineering Physics, Tsinghua University, Beijing, China
Outline

• Background and motivation
• General design of CEE-eTOF wall
• Structural design of sealed MRPC
• Cosmic test results
• Summary and outlook
Background

The CSR (Cooler Storage Ring) External-target Experiment (CEE)

➢ @ Heavy Ion Research Facility in Lanzhou, China. (HIRFL)

➢ **Physics destinations**: Low temperature & high density in QCD phase diagram, EOS for nucleus matter, hyper-nucleus.

➢ **Beam from CSR**: Heavy ion (up to U+U) collision, 0.5-1.2GeV/u, 10^4evts/s

➢ **Timing detectors** (MRPC): T_0, iTOF, eTOF

Background

Timing detectors using MRPC technology

<table>
<thead>
<tr>
<th>index</th>
<th>T0</th>
<th>iT0F</th>
<th>eTOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from collision</td>
<td>10~20cm (barrel inner diameter)</td>
<td>≥50cm</td>
<td>3m</td>
</tr>
<tr>
<td>Effective coverage</td>
<td>1m2</td>
<td>3m2</td>
<td>8m2</td>
</tr>
<tr>
<td>channel</td>
<td>300</td>
<td>~1200</td>
<td>~1500</td>
</tr>
<tr>
<td>Timing requirement</td>
<td>50ps</td>
<td>50ps</td>
<td>80ps</td>
</tr>
<tr>
<td>Gas gaps</td>
<td>10~12</td>
<td>24~32</td>
<td>10</td>
</tr>
</tbody>
</table>
General design of CEE-eTOF wall

eTOF wall design

For each:

➢ 2m×2m coverage => acceptance much better than 50% (center of mass).
➢ Overlap: x – 3cm; y – 1.8cm (1 strip).
➢ 768 readout channels => occupancy < 10%.
➢ 3m from collision center
➢ 80 ps time resolution

Module design:

➢ 24 counters in 8 modules.
➢ 3 serial counters for gas supply
General design of CEE-eTOF wall

Future eTOF MRPC detector

Performance requirements:

➢ Efficiency: over 95%
 ➢ Double stacks, 2×5 gas gap, 0.25mm for each gap
➢ Time resolution: better than 80 ps
 ➢ Double-end readout
➢ Geometry:
 ➢ 16 strips
 ➢ Pitch 22mm, 18mm width + 4mm gap.
 ➢ Length 52cm
➢ Estimated strip impedance 30Ω *
➢ Sealed design

Conceptual layout

* Based on the empirical formula in:
Motivation

Sealed design —— Decreasing gas consuming for MRPC

➢ High GWP value

\[
\begin{align*}
F = C &= H \\
F = C &= H
\end{align*}
\]

\[
\begin{align*}
GWP &= 1430 \\
GWP &= 3.3 \\
GWP &= 22800
\end{align*}
\]

➢ Gas leak

- RPC takes up most of the GHG emission.
- e.g. CMS Phase-II RPC, gas leakage 900L/h in 2019

➢ High flow

- gas exchange for MRPC is mainly by diffusion.
- To keep the pure environment, gas flow can’t decline much.
- Shrink the gas box volume -> sealed design

RPC 2020, Rome, Italy.
Structural design of sealed MRPC

New thought for sealing

Using outermost glass plates and sealing frame

Different thoughts:

PCB or glass plate as sealing panel.

Structural design of sealed MRPC

Sealing frame by 3D printing
- Gas inlet/outlet
- Spacers
- Glass position holder
- Screwing hole

Material: photosensitive resin
- HV tolerance up to +/-10kV in test
- No aging damage observed under X-ray (45kV 0.3mA)
Structural design of sealed MRPC

Gas flow uniformity

- Inlet/outlet placement
- 3D Flow field simulation by ANSYS Fluent
- Low velocity zone indicates pollutant concentration.

2 pairs:

Gas flow: 3ml/min
Sealed MRPC prototype

Type similar as MRPC3a
- 2 stack * 4 gas gap * 0.25mm
- Float glass plates of 0.7mm width
- 30 channels, differential signal
- 2-end readout
- Strip length 27cm, 7mm width + 3mm gap
- Sealed design, total gas volume ~170ml
Cosmic test system

Originally developed for CBM-TOF MRPC3a mass production
Performances of 3 counters can be obtained in single run
Dut: Detector under test
Ref: provide time reference
Beamref: for hit selection

Trigger and readout board v3 (TRB3):
<20ps RMS between 2 channels
8*(64+1) channels
Web interface
Hit rate up to 66MHz

PreAmplifier-Discriminator ASIC chip (PADI)
50Ω impedance
Bandwidth ~400MHz, Gain 30mV/fC
Threshold set to 300mV during test.

2* scintillators
Triggering area: 5cm*20cm
Parallel to strip length
Cosmic test system

Cosmic test system
- 2*MRPC3a for CBM as references
- TRB3 chip as DAQ
- Strip->PADI10 FEE->TDC->TRB-> Computer

- Environment: ~25°C, 23%
- HV: CAEN SY4527

In test runs:
- Quick gas exchange at 20ml/min flow
- Apply the working HV within 1hr.
- For comparison, gas box needs 2 days before applying HV

Standard gas supply system
Cosmic test results

Standard gas flow 4 ml/min (minimum setting for mixer)
Freon/iC$_4$H$_{10}$/SF$_6$ 90/5/5; Temp: 25°C, dark current ~20nA
At working point 5600V(112kV/cm): Eff 97.5%, time resolution 85.5ps (time difference)

Reference MRPC3a, flow 50ml/min for gas box:
Working HV 5300V (106kV/cm), eff 97.9%, time resolution 83ps
Cosmic test results

Pure Freon flow 1ml/min
Temp: 25°C, dark current ~20nA
At working point 5300V (106kV/cm):
Eff: 96%, time resolution 102ps
Cosmic test results

Pure Freon flow 1ml/min, serial chambers, stability test

➢ No leak point/performance decline/gas chock
➢ Temp. dependency, humidity insensitive ~19-25%
➢ Event number >10k for each run
➢ Timing — events dependency may caused by temperature fluctuation.

RPC 2020, Rome, Italy.
Summary and outlook

• The CEE-eTOF wall will be constructed with sealed MRPC.
• By gluing the electrode glasses with sealing frame, gas volume reaches as low as 170ml, in which case gas exchange becomes better.
• To optimize flow field uniformity, placements of space holder, in/outlets, etc. must be considered and verified by simulation.
• Sealed MRPC prototype has low gas consume and works stably under cosmic ray, at a flow 1ml/min for over 20 days. time resolution can reach ~60ps in standard gas.

Next step:
• Eco-gas test
• Real-size prototypes for CEE
• High-rate aging test

Thank you!