RPC2020

The CEE-eTOF wall constructed with new sealed MRPC

Botan Wang, Dong Han, Yi Wang, Xiaolong Chen

Key Laboratory of Particle and Radiation Imaging, Department of Engineering Physics, Tsinghua University, Beijing, China

Outline

- Background and motivation
- General design of CEE-eTOF wall
- Structural design of sealed MRPC
- Cosmic test results
- Summary and outlook

L. M. Lv, H. Yi, Z. G. Xiao, S. Zhang, G. Q. Xiao, and N. Xu, Conceptual design of the HIRFL-CSR external-target experiment, Sci. China-Phys. Mech. Astron.60, 012021 (2017), doi: 10.1007/s11433-016-0342-x

Background

The CSR (Cooler Storage Ring) External-target Experiment (CEE)

- @ Heavy Ion Research Facility in Lanzhou, China. (HIRFL)
- Physics destinations: Low temperature & high density in QCD phase diagram, EOS for nucleus matter, hyper-nucleus.
- Beam from CSR: Heavy ion (up to U+U) collision, 0.5-1.2GeV/u, 10⁴evts/s
- Timing detectors (MRPC): T₀, iTOF, eTOF

Background

Timing detectors using MRPC technology

index	то	iTOF	eTOF
Distance from collision	10~20cm (barrel inner diameter)	≥50cm	3m
Effective coverage	1m ²	3m ²	8m²
channel	300	~1200	~1500
Timing requirement	50ps	50ps	80ps
Gas gaps	10~12	24~32	10

iTOF

T0

General design of CEE-eTOF wall

eTOF wall design

For each:

- 2m×2m coverage => acceptance much better than 50% (center of mass).
- > Overlap: x 3cm; y 1.8cm(1 strip).
- 768 readout channels => occupancy < 10%.</p>
- 3m from collision center
- ➢ 80 ps time resolution

Module design:

- > 24 counters in 8 modules.
- 3 serial counters for gas supply

General design of CEE-eTOF wall

Future eTOF MRPC detector

Performance requirements:

- ➢ Efficiency: over 95%
 - Double stacks, 2×5 gas gap, 0.25mm for each gap
- Time resolution: better than 80 ps
 - Double-end readout
- ➤ Geometry:
 - ≻ 16 strips
 - Pitch 22mm, 18mm width + 4mm gap.
 - ➤ Length 52cm

\succ Estimated strip impedance 30 Ω *

Sealed design

Conceptual layout

* Based on the empirical formula in:

Yu, Y., et al. "Study of transmission-line impedance of strip lines in an MRPC detector." *NIMA* 953 (2020): 163152.

6

2019 Annual review of the Phase-II Muon upgrade Held on October 15, 2019 https://indico.cern.ch/event/817802/

33rd CBM Week. https://indico.gsi.de/event/8068/session/13/contribution/21

Motivation

Sealed design — Decreasing gas consuming for MRPC

+

High GWP value

• RPC takes up most of the GHG emission.

GWP 1430

e.g. CMS Phase-II RPC, gas leakage 900L/h in 2019

GWP 3.3

GWP 22800

- ➤ High flow
 - gas exchange for MRPC is mainly by diffusion.
 - To keep the pure environment, gas flow can't decline much.
 - Shrink the gas box volume -> sealed design

New thought for sealing

Using outermost glass plates and sealing frame

X.L Chen, et al. Design and Performance study of **Sealed MRPC** (SMRPC) with extremely low gas flow for muon tomography. Talk on IPRD19, Siena. <u>https://indico.cern.ch/event/843258/contributions/3610599/</u>

Sealing frame by 3D printing

- · Gas inlet/outlet
- Spacers
- Glass position holder
- Screwing hole

Material: photosensitive resin

- ➢ HV tolerance up to +/-10kV in test
- No aging damage observed under X-ray (45kV 0.3mA)

Outer (electrode) glass Inner glasses

Inlet/outlet

RPC 2020, Rome, Italy.

Tubes at different position

Sealed MRPC prototype

Type similar as MRPC3a

2 stack * 4 gas gap * 0.25mm Float glass plates of 0.7mm width 30 channels, differential signal 2-end readout Strip length 27cm, 7mm width+3mm gap Sealed design, total gas volume ~170ml

Real detector picture

Cosmic test system

Originally developed for CBM-TOF MRPC3a mass production Performances of 3 counters can be obtained in single run

Dut: Detector under test Ref: provide time reference Beamref: for hit selection

Trigger and readout board v3 (TRB3): <20ps RMS between 2 channels 8*(64+1) channels Web interface Hit rate up to 66MHz

 $\begin{array}{l} \mbox{PreAmplifier-DIscriminator ASIC chip} \\ \mbox{(PADI)} \\ \mbox{50}\Omega \mbox{ impedance} \\ \mbox{Bandwidth } \mbox{-}400\mbox{MHz}, \mbox{ Gain 30}\mbox{mV/fC} \\ \mbox{Threshold set to 300}\mbox{mV during test.} \end{array}$

2* scintillators Triggering area: 5cm*20cm Parallel to strip length

Cosmic test system

Cosmic test system

- 2*MRPC3a for CBM as references
- TRB3 chip as DAQ
- Strip->PADI10 FEE->TDC->TRB-> Computer
- ➤ Environment: ~25°C, 23%
- ➢ HV: CAEN SY4527

In test runs:

➢Quick gas exchange at 20ml/min flow

Apply the working HV within 1hr.
For comparison, gas box needs 2 days before applying HV

Cosmic test results

Standard gas flow 4 ml/min (minimum setting for mixer)

Freon/iC₄H₁₀/SF₆ 90/5/5; Temp: 25°C, dark current ~20nA

At working point 5600V(112kV/cm): Eff 97.5%, time resolution 85.5ps (time difference)

Reference MRPC3a, flow 50ml/min for gas box:

Working HV 5300V (106kV/cm), eff 97.9%, time resolution 83ps

Cosmic test results

Pure Freon flow 1ml/min

Temp: 25°C, dark current ~20nA At working point 5300V (106kV/cm): Eff: 96%, time resolution 102ps

Cosmic test results

Pure Freon flow 1ml/min, serial chambers, stability test

No leak point/performance decline/gas chock
 Temp. dependency, humidity insensitive ~19-25%

Event number >10k for each run

Timing — events dependency may caused by temperature fluctuation.

RPC 2020, Rome, Italy.

Summary and outlook

- The CEE-eTOF wall will be constructed with sealed MRPC.
- By gluing the electrode glasses with sealing frame, gas volume reaches as low as 170ml, in which case gas exchange becomes better.
- To optimize flow field uniformity, placements of space holder, in/outlets, etc. must be considered and verified by simulation.
- Sealed MRPC prototype has low gas consume and works stably under cosmic ray, at a flow 1ml/min for over 20 days. time resolution can reach ~60ps in standard gas.

Next step:

- Eco-gas test
- Real-size prototypes for CEE
- High-rate aging test

Thank you!