Time reconstruction in MRPC
detector using deep-learning
algorithms
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Tsinghua University

m Background

m High time resolution MRPC

m Machine Learning (ML) based reconstruction algorithm
m ML training with simulation, testing with simulation
m ML training with simulation, testing with experiment
m ML training with experiment, testing with experiment

m Summary
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m SoLID(Solenoidal Large Intensity Device) @ JLab
m Separation between 7/K up to momentum of 7GeV/c

—— K/p Separation

—
=T

-t
o S
T | LI T T

A challenge for MRPC: 20 ps time resolution
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m Time resolution of present MRPCs:
80ps@ALICE, 70ps@STAR, 60ps@CBM
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m Howtoimprove ?
1. Geometry: thinner gaps && more gaps
2. Electronics and read out system:

Fast FEE Waveform Digitizer

From TDC to fast FEE and waveform digitizer:

v Get rid of 0 = 20 ~ 30ps uncertainty of every TDC channel
v/ Able to extract more information from the waveform

v/ Contribution of resolution: 15 ps from the FEE and the digitizer
15 ps from the MRPC detector

3. Time reconstruction algorithms
From time over threshold (ToT) into deep learning based algorithms
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MRPC detector

m High time resolution MRPC: selected
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m Machine learning algorithms can acquire knowledge from the data through
feature extraction and representation learning

m Deep neural network is one of the most important machine learning algorithms
that solves problems with significant non—linearities

m Widely used in high energy physics

m For MRPCs:
networks are trained to reconstruct the time related to each event
Input Network Output
MRPC waveform MLP, LSTM, CNN MRPC related Time
feature label to t

-

v Generated by simulation
v Generated by experiment
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m Multilayer perceptron (MLP)

Fi(Z) = h()_(whe(-90)_(@ikg(D_(whz +xR)- +x3) +x7)
k l

Output J Input

Input Hidden layers Output o _
m Activation function: g and h —— tanh

m Weights: %1 Ol
m “Dropout”: avoid overfitting
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Time of the very first interaction: to = ¢, — £,

m Train/validate/test: 60k, 10k,6k

Several uniformly distributed m Tensorflow & GPU: GTX 1080 Ti
points along the leading edge

m "~ 10 mins for training
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m Recurrent neural networks(RNN): Long Short Term Memory network(LSTM)

O1 02 O3« On «——| The length of the leading edge t.

Several uniformly distributed
points along the leading edge

f: forget gate: Whether to erase

| : Input gate, whether to write

g: gate gate, How much to write

0: output gate, How much to reveal

m Every “LSTM” box has 420 units
m Tensorflow & GPU: GTX 1080 Ti

> 30 mins for training
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m Advanced: ComLSTM——combination of LSTM-420 and MLP
m |Inputs are divided into 2 paths
1. Go directly into LSTM-420
2. Go into a MLP with 100 nodes, and then go into a LSTM-400
m The outputs of the 2 paths are added together with ratio 71, 79
O=T7T1'011+T9" 029

Waveform
LSTM-420
Xo
Expand the input X, 4 r.| Rising
feature and extract : LSTM-400 D time
the details : 100 OQ - O = OQQ oo O
1 Xn O19
1
| Input LSTM MLP Output
Learn patterns from | Performance is improved when NN
the magnified details structure is more reasonable
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m Simulation data used for both training and testing

Leading edge Neural Rising time
(simulation) network (simulation)
] ) MRPC Simulation: 4x8x104um 80
m Input: 10 sampling points around g | £t g
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Details are magnified!
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m 2 identical MRPC: 4x8 gaps, 0.104 mm
m Cosmic ray experiment
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m High performance FEE from USTC: :
‘waveform

NIMA 925 (2019) 53-59

m Waveform digitizer: Lecroy HDO6104A
Oscilloscope, 1GHz bandwidth, 10Gs/s
sampling rate

m  MRPC waveform rising time around 1 ns, O *ensuennn
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m Simulation data used for training, experiment data for testing

Training simulation simulation
Leading edge Neural network Rising time
Testing  experiment experiment

m Success of the algorithm: simulation data match experiment data!

é N — Smulaton ‘ Histogram of peak point value in
3 — Right simulation & experiment data
% i — Left+Right
£ 008 m KL divergence: difference of 2 distributions
=
0.06/- p(x) True: experiment
: D(p,q) = Y p(z)ln"+ @ E |
0.04 reX q sti.: simulation
0.02- m Information lost when approximate p(x) with
: _rIE SN- q(X)
04" 50 100 150 200 250 M Smaller D(p,q): similar p(x) and q(x)

Amplitude [mV]
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m Evaluate how similar the simulation data are with the experiment:

1 T
Dg = — E D;(p,q) i 1D of point along the leading edge
n
1=0
: MRPC Experiment: 4x8x 104
m Take the average of KL divergence 7 30 APETINENE X i
for every point along the leading edge € ogr Choose the most similar
5 ¢t simulation set
. . . @ 261
Simulate with a certain set e
of FEE parameters 2 24f
= - .
/ \ 22 .
Calculate the KL Test the exper. data 20
divergence of simu. with NN models 18:_
and exper. trained with simu. 1
16/
D o (¢)

KL Divergence
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m Simulation data used for training, experiment data for testing

Training/evaluating: 60,000/10,000 simulation events

Lty Testin : L
e & Leading edge ' Neural * Rising time ¢, tyo
to1 tp1 (experiment) network (experiment)
o m @156 kV/cm, the network converges quickly
tfm t 0 MRPC Simulation: training with LSTM MRPC Experiment: 4x8x104um, 156kV/cm
4 @ 2 120F Entries 1560
S0 e training loss § i Mean 1605
. —= validation loss © 100'_ Std Dev 24.06
1. Find tjplltiﬂ I i 2/ ndf 49.89 /27
i Constant 107.7 +3.4
2. t'rl, tr2 from NN 1072 80~ Mean 1605 + 0.7
. B i Sigma  23.82+0.47
3. Get to1, tg2 «— MRPC time | 60
4. Define: At = to1 — to2 103 401
o(At)  23.82 ? :
o= (&%) = =168 ps | 201~
V2 V2 :
0% e e L e
0 20 40 60 80 100 120 140 1500 1550 1600 1650 1700 1750 1800
Epochs At [ps]
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Experiment results

m ToT method: discriminate the threshold crossing time, and correct it with
waveform peak.

g 200p g 200p MRPC Experiment: thin gap, after correction
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m Electric field (E) was scanned in the experiment

m Neural network is better than ToT method no matter what E is

MRPC Experiment: 4x8x104um MRPC Experiment: 4x8 gaps, 0.104 mm
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m Time resolution VS sampling rate
m Lecroy HDO6104A Oscilloscope: 10Gs/s sampling rate
m Down sampling manually to 5G, 3.33G, 2.5G and 2G
m Time resolutions are given . a0, MRPC Experiment: 4x8x 104um
by both tot and comLSTM 8 T _ _
m Inthe real application, waveform & 353_ " Slewing Correction
digitizer is designed to be 5G —§ i ~ Neural Network
2 I
The resolution improves much %E:: 0P
at low sampling rate, while ool
keeps stable at high rate! 250 \
20| ™ -
Differences between 2 i ‘\?\,
methods are huge when 151
sampling rate is low ! -

Sampling Rate [Gs/s]
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m Train and test the ComLSTM network with experiment data

1 Exper. waveform + reference time Time difference of 2 MRPCs give by distance/c

2 Exper. waveform + reference time Time difference given by ToT \
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MRPC Experiment: Loss MRPC Experiment: Learned from NN
% 1= 8 200 Entries 2471
B s -*-Training Loss U‘EJ 180:— Mean -0.04935 . . .
- Validating loss : sapev a2 Time difference given
160:— %2 I ndf 97.55/30 » .
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Exper. waveform + reference time Time difference give by distance/c  19.71 ps

2 Exper. waveform + reference time Time difference given by ToT 23.62 ps

3 Simu. waveform Exper. waveform Rising time 16.84 ps

m Learn from the simulation: true information of waveform and time, therefore
resolution is the best when simulation matches the experiment data.

m Learn fromthe ToT time: performance highly depends on the accuracy of ToT
method. Time resolution is not so good as the other 2.

m Learn from the time given by distance/c: closely related when selection of
perpendicular events are made. Time resolution is relatively good!

The 1st and 2nd methods prove that the learning based
algorithms can be designed only with experiment data.
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m Adeep learning based algorithm has been developed to reconstruct the
time of the MRPC detectors

m Different kinds of neural networks, different structures of the networks,
and different logic of the algorithms are designed.

m The best time resolution of the MRPC detector with 4x8 gaps (0.104 mm
thick) achieves 16.84 ps with ComLSTM network.

m The networks are also trained with the experiment data and a resolution of
19.71 ps is achieved.

m |tisreally hopeful for the success of sub-20 ps MRPC detector, and hopeful
for the implementation of neural networks in analyzing the time detected
by MRPCs.
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m If experiment data are used to train the network, it needs to be
augmented, because the volume of the data collected is not enough.

m Data augmentation, for every waveform
one can choose the following to be network
features:

1. PointID 0-9
2. PointID 1-10
3. PointID 2-11
4. ..

Data can be augmented by 3~5 times !
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