

Time reconstruction in MRPC detector using deep-learning algorithms

Fuyue Wang

Content

Background

- High time resolution MRPC
- Machine Learning (ML) based reconstruction algorithm
 - ML training with simulation, testing with simulation
 - ML training with simulation, testing with experiment
 - ML training with experiment, testing with experiment

Summary

Background

Fuyue Wang

Background

- How to improve ?
 - 1. Geometry: thinner gaps && more gaps
 - 2. Electronics and read out system:

From TDC to fast FEE and waveform digitizer:

- \checkmark Get rid of $\sigma=20\sim 30 \mathrm{ps}$ uncertainty of every TDC channel
- ✓ Able to extract more information from the waveform
- ✓ Contribution of resolution: 15 ps from the FEE and the digitizer 15 ps from the MRPC detector
- 3. Time reconstruction algorithms From time over threshold (ToT) into deep learning based algorithms

Fuyue Wang

MRPC detector

High time resolution MRPC: selected according to simulation 4 x 8 gaps, 0.104 mm thickness 4 x 8 gaps, 0.104 mm thickness Hid PCB PCB PCB PCB PCB PCB PCB PCB					
according to simulation 4 x 8 gaps, 0.104 mm thickness 4×8 gaps, 0.	High time resolution MRPC: selected		Length (mm)	width (mm) thicknes (smm)	
$4 \times 8 \text{ gaps, 0.104 mm thickness} \qquad \begin{array}{c} glass \\ mylar \\ 268 \\ 90 \\ 0.25 \\ Mid PCB \\ 328 \\ 120 \\ 1.2 \\ PCB \\ 298 \\ 120 \\ 0.6 \\ Honeycomb \\ 265 \\ 90 \\ 7.5 \\ \hline \end{array}$	according to simulation	gap	258	80	0.104
mylar 268 90 0.25 Mid PCB 328 120 1.2 PCB 298 120 0.6 Honeycomb 265 90 7.5 MRPC Simulation: time resolution, a'g=28 90 0.25 Number of gaps=6 Number of gaps=12 90 90 Number of gaps=24 90 90 7.5 Number of gaps=32 90 90 90 90 Number of gaps=32 90 90 90 90 Number of gaps=32 90 90 90 90 Number of gaps=24 90 90 90 90 Number of gaps=32 90	4 x 8 gans 0 104 mm thickness	glass	258	80	0.5
Mid PCB 328 120 1.2 PCB 298 120 0.6 Honeycomb 265 90 7.5 MHPC Simulation: time resolution, α /g=28, 32 gaps MHPC Simulation: time resolution, α /g=28, 32 gaps MHPC Simulation: time resolution, α /g=28, 32 gaps Number of gaps=10 Number of gaps=20 Number of gaps=32 Number of gaps=32		mylar	268	90	0.25
PCB 298 120 0.6 Honeycomb 265 90 7.5 Honeycomb 265		Mid PCB	328	120	1.2
Honeycomb 265 90 7.5 Honeycomb 265 90 7.5 MHPC Simulation: time resolution, $\alpha'g=28$ q with the resolution, $\alpha'g=28$ q with the resolution, $\alpha'g=28$ q with the resolution, $\alpha'g=28$ q with the resolution of gaps=10 q with the resolution of gaps=24 q with the resolution of gaps=32 q with the res		PCB	298	120	0.6
Intrinsic time resolution Wang F, et al. NIMA 950: 162932.		Honeycoml	b 265	90	7.5
Intrinsic time resolutionWang F, et al. NIMA 950: 162932. 100 150 200 250 300 300 100 150 200 250 300 12 3 4 5 6 7 8 Number of Stack	- HV - HV - HV - HV - HV - Number of gaps=0 - Number of gaps=0 - Number of gaps=0 - Number of gaps=1 - Number of gaps=2 - Number of gaps	e resolution, α'g=28 6 7 10 12 20 24 32	8 16 MRP	<u>C Simulation: α'g=2</u> gap thickness=104 gap thickness=120 gap thickness=140 truth time corrected time	<i>8, 32 gaps</i> μm μm
Wang F, et al. NIMA 950: 162932. 100 150 200 250 300 1 2 3 4 5 6 7 8 Gan Thickness [um]	Intrinsic time resolution		6		
100 150 200 250 300 1 2 3 4 5 6 7 8 Gap Thickness [um]	Wang F, et al. NIMA 950: 162932. 5				
	100 150 200) 250 Gap Thickness	300 1 [um]	2 3 4 5	6 7 8 Number of Stack

Fuyue Wang

- <u>Machine learning algorithms</u> can acquire knowledge from the data through feature extraction and representation learning
- <u>Deep neural network</u> is one of the most important machine learning algorithms that solves problems with significant non–linearities
- Widely used in high energy physics
- For MRPCs:

networks are trained to reconstruct the time related to each event

Multilayer perceptron (MLP)

$$\frac{F_i(\vec{x})}{\text{Output}} = h(\sum_j (\omega_{ij}^2 g(...g(\sum_k (\omega_{jk}^1 g(\sum_l (\omega_{kl}^0 x_l + \chi_k^0)... + \chi_j^1) + \chi_i^2))))$$

Several uniformly distributed points along the leading edge

- Activation function: g and h tanh
 Weights: $\omega^{0,1...}, \chi^{0,1...}$
- "Dropout": avoid overfitting

The length of the leading edge t_r

Time of the very first interaction: $t_0 = t_p - t_r$

- Train/validate/test: 60k, 10k,6k
- Tensorflow & GPU: GTX 1080 Ti
- ~ 10 mins for training

Fuyue Wang

LSTM-420

Recurrent neural networks(RNN): Long Short Term Memory network(LSTM)

- Every "LSTM" box has 420 units
- Tensorflow & GPU: GTX 1080 Ti

The length of the leading edge t_r

Several uniformly distributed points along the leading edge

- **f** : forget gate: Whether to erase
- I : Input gate, whether to write
- g: gate gate, How much to write
- o: output gate, How much to reveal

> 30 mins for training

ML with simulation

- Advanced: ComLSTM——combination of LSTM-420 and MLP
- Inputs are divided into 2 paths
 - 1. Go directly into LSTM-420
 - 2. Go into a MLP with 100 nodes, and then go into a LSTM-400
- The outputs of the 2 paths are added together with ratio r_1,r_2

Simulation data used for both training and testing

Fuyue Wang

Fuyue Wang

Experiment

- 2 identical MRPC: 4x8 gaps, 0.104 mm
- Cosmic ray experiment

- High performance FEE from USTC: NIMA 925 (2019) 53–59
- Waveform digitizer: Lecroy HDO6104A
 Oscilloscope, 1GHz bandwidth, 10Gs/s sampling rate
- MRPC waveform rising time around 1 ns, 10 points

Fuyue Wang

Experiment results

Simulation data used for training, experiment data for testing

Fuyue Wang

KL divergence

- Evaluate how similar the simulation data are with the experiment:
 - $D_s = rac{1}{n} \sum_{i=0}^n D_i(p,q)$

i: ID of point along the leading edge

MRPC Experiment: 4×8×104µm 30 Take the average of KL divergence Time Resolution [ps] Choose the most similar for every point along the leading edge 28 simulation set 26 Simulate with a certain set of FEE parameters 24 22 20 Calculate the KL Test the exper. data with NN models divergence of simu. 18 trained with simu. and exper. 16 $\sigma(t)$ D_{si} 14 0.5 1.5 2 2.5 **KL** Divergence

Fuyue Wang

Simulation data used for training, experiment data for testing

Fuyue Wang

ToT method: discriminate the threshold crossing time, and correct it with waveform peak.

RPC2020 Feb. 10-14, 2020

Fuyue Wang

- Electric field (E) was scanned in the experiment
- Neural network is better than ToT method no matter what E is

Experiment results

- Time resolution VS sampling rate
- Lecroy HDO6104A Oscilloscope: 10Gs/s sampling rate
- Down sampling manually to 5G, 3.33G, 2.5G and 2G
- Time resolutions are given by both tot and comLSTM
- In the real application, waveform digitizer is designed to be 5G
 - The resolution improves much at low sampling rate, while keeps stable at high rate!
 - Differences between 2 methods are huge when sampling rate is low !

Fuyue Wang

Train and test the ComLSTM network with experiment data

Experiment results

OL

-150 -100

-50

120

Epochs

100

Time difference given by **ToT+slewing correction**

Fuyue Wang

0

20

60

80

0

清莱大学

Tsinghua University

RPC2020 Feb. 10-14, 2020

50

100 150 200

∆t [ps]

0

Results summary

	Train Input	Test input	output	Reso
1	Exper. waveform	+ reference time	Time difference give by distance/c	19.71 ps
2	Exper. waveform	+ reference time	Time difference given by ToT	23.62 ps
3	Simu. waveform	Exper. waveform	Rising time	16.84 ps

- Learn from the simulation: true information of waveform and time, therefore resolution is the best when simulation matches the experiment data.
- Learn from the ToT time: performance highly depends on the accuracy of ToT method. Time resolution is not so good as the other 2.
- Learn from the time given by distance/c: closely related when selection of perpendicular events are made. Time resolution is relatively good!

The 1st and 2nd methods prove that the learning based algorithms can be designed only with experiment data.

Fuyue Wang

- A deep learning based algorithm has been developed to reconstruct the time of the MRPC detectors
- Different kinds of neural networks, different structures of the networks, and different logic of the algorithms are designed.
- The best time resolution of the MRPC detector with 4x8 gaps (0.104 mm thick) achieves 16.84 ps with ComLSTM network.
- The networks are also trained with the experiment data and a resolution of 19.71 ps is achieved.
- It is really hopeful for the success of sub-20 ps MRPC detector, and hopeful for the implementation of neural networks in analyzing the time detected by MRPCs.

If experiment data are used to train the network, it needs to be augmented, because the volume of the data collected is not enough.

- Data augmentation, for every waveform one can choose the following to be network features:
 - 1. PointID 0-9
 - 2. PointID 1-10
 - 3. PointID 2-11

4. ...

Data can be augmented by 3~5 times !