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Abstract
Charge density modulations have been observed in all families of high–critical temperature (Tc) superconducting cuprates. Although they are consistently found in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering (RIXS) [1], we carefully determined the temperature dependence of charge density modulations in YBa2Cu3O7– and Nd1+xBa2–xCu3O7– for several doping levels. We isolated short-range dynamical charge density fluctuations in addition to the previously known quasi-critical charge density waves. They persist up to well above the pseudogap temperature T*, are characterized by energies of a few meV, and pervade a large area of the phase diagram (see Fig. 1). 
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[bookmark: _GoBack]Fig. 1 – (A) The temperature T vs. doping p phase diagram of cuprates is typically marked by the antiferromagnetic, pseudogap, and superconducting regions (respectively characterized by the onset temperatures TN, T*, and Tc). Our results prove that most of these regions are pervaded by charge density modulations of some sort. The narrow peak (NP)  describes the charge density waves (CDWs), manifesting in a region (pale blue) below TQC (crosses). These two-dimensional (2D) CDWs are quasi-critical and are precursors of the static three-dimensional (3D) CDWs (blue region). Even though we cannot directly access this dome without a magnetic field, the temperatures T3D (squares) that we infer from the T dependence of the NP full width at half maximum (FWHM) are in agreement with those previously determined by NMR and hard x-ray scattering experiments [2,3]. The broad peak (BP) describes short-range charge density fluctuations (CDFs), which dominate the phase diagram (red region), coexisting both with the quasi-critical 2D CDWs and with superconductivity, and persisting even above T*. In contrast, CDFs disappear in undoped/antiferromagnetic samples (white region), whereas their occurrence between p ≈ 0.05 and p ≈ 0.08 has yet to be determined. To evaluate the characteristic energies w0 associated with the BP, we measured high-resolution RIXS spectra at various temperatures on the samples OP90 (optimally doped, with Tc = 90 K) and UD60 (underdoped, with Tc = 60 K). (B) Quasi-elastic component of the spectra (after subtraction of the phonon contribution) at T = 90, 150, and 250 K, measured on sample OP90 at an in-plane wavevector q|| = (0.31, 0). (C and D) The experimental 150 K–250 K and 90 K–150 K difference spectra, presented in (B), are shown (spheres), together with the theoretical calculation (solid areas). The data are in agreement with the theory, assuming w0 ≈ 15 meV at 150 and 250 K and w0 ≈ 7 meV at 90 K [dashed lines in (C) and (D)]. 
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character and, because of strong quantum ther-
mal dynamical fluctuations, they acquire a truly
static character only below T3D. For YBCO and
NBCO, T3D is smaller than Tc, thus requiring
strongmagnetic fields or epitaxially grown sam-
ples to suppress superconductivity to obtain static
3D CDWs.
Although this theory can explain most of the



experimental findings, some questions remain
open. Other cuprate families will have to be
tested and the doping region extended to con-
firm the general applicability of the dynamic
CDF scenario. A BP, centered at q∥ ≈ qNPc and per-
sisting at high temperatures, has been observed
over the past few years in other cuprates (13, 38),
pointing toward a universality of the CDF phe-
nomenon. However, none of the aforementioned
experiments has been conclusive in this respect,
because a complete temperature dependence
and/or a discrimination of the quasi-elastic



signal from the inelastic one was missing. The
actual relation between the quasi-critical CDW
and the dynamical CDF must also be fully clar-
ified, with particular reference to the possible
spatial separation or coexistence of the two
phenomena, ultimately linked to the role of
disorder in the samples studied by scanning
tunneling microscope (7, 39, 40) and micro–
x-ray scattering (41) experiments.
The most intriguing finding of this work is the



ubiquitous presence (both in temperature and
doping) of a broad peak caused by dynamical
CDFs, which have small energies of a few meV
and extend over a broadmomentum range. There-
fore, they provide quite an effective low-energy
scattering mechanism for all the quasi-particles
on the Fermi surface. This makes these excita-
tions an appealing candidate for producing the
linear temperature dependence of the resistivity
in the normal state and other marginal Fermi



liquid phenomena that, since the early days of
HTS (42), have been the most prominently pe-
culiar properties of the cuprates.
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Fig. 4. Static and dynamic charge order in the phase diagram of the HTS cuprates. (A) The
T-p phase diagram of cuprates is typically marked by the antiferromagnetic, pseudogap, and
superconducting regions (respectively characterized by the onset temperatures TN, T*, and Tc).
Our results prove that most of these regions are pervaded by charge density modulations of some
sort. The narrow peak describes the CDWs, manifesting in a region (pale blue) below TQC (crosses).
These 2D CDWs are quasi-critical and are precursors of the static 3D CDWs (blue region). Even
though we cannot directly access this dome without a magnetic field, the temperatures T3D



(squares) that we infer from the T dependence of the NP FWHM are in agreement with those
previously determined by NMR and hard x-ray scattering experiments (15, 16). The broad peak
describes short-range charge density fluctuations (CDFs), which dominate the phase diagram (red
region), coexisting both with the quasi-critical 2D CDWs and with superconductivity, and persisting
even above T*. In contrast, CDFs disappear in undoped/antiferromagnetic samples (white region),
whereas their occurrence between p ~ 0.05 and p ~ 0.08 has yet to be determined. To evaluate the
characteristic energies w0 associated with the BP, we measured high-resolution RIXS spectra at
various temperatures on the samples OP90 and UD60. (B) Quasi-elastic component of the spectra
(after subtraction of the phonon contribution) at T = 90, 150, and 250 K, measured on sample OP90
at q|| = (0.31, 0). (C and D) The experimental 150 K–250 K and 90 K–150 K difference spectra,
presented in (B), are shown (spheres), together with the theoretical calculation (solid areas). The data
are in agreement with the theory, assuming w0 ≈ 15 meV at 150 and 250 K and w0 ≈ 7 meV at 90 K
[dashed lines in (C) and (D)].
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Fig.4.StaticanddynamicchargeorderinthephasediagramoftheHTScuprates.(A)The

T-pphasediagramofcupratesistypicallymarkedbytheantiferromagnetic,pseudogap,and
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Ourresultsprovethatmostoftheseregionsarepervadedbychargedensitymodulationsofsome

sort.ThenarrowpeakdescribestheCDWs,manifestinginaregion(paleblue)belowT

QC

(crosses).

These2DCDWsarequasi-criticalandareprecursorsofthestatic3DCDWs(blueregion).Even

thoughwecannotdirectlyaccessthisdomewithoutamagneticfield,thetemperaturesT

3D

(squares)thatweinferfromtheTdependenceoftheNPFWHMareinagreementwiththose

previouslydeterminedbyNMRandhardx-rayscatteringexperiments(15,16).Thebroadpeak

describesshort-rangechargedensityfluctuations(CDFs),whichdominatethephasediagram(red

region),coexistingbothwiththequasi-critical 2DCDWsandwithsuperconductivity,andpersisting
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