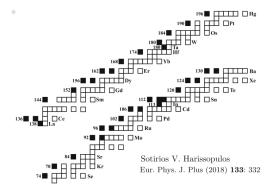
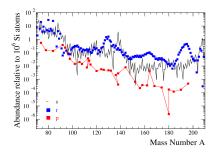
PARIS for studying the p-process nuclei PARIS Collaboration meeting New ideas for PARIS

B. Rebeiro

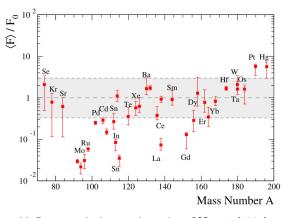
Institut de Physique des 2 Infinis de Lyon

Nov 28-29, 2019 Legnaro, Padova




p-nuclei

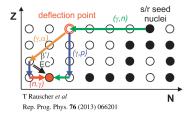
- \bullet Majority of heavy nuclei (beyond $^{56}{\rm Fe}$) produced via s- or r- process.
- ~ 35 proton rich nuclei between $^{74}{\rm Sr}$ $^{196}{\rm Hg}$ shielded from n-captures..
- produced purely by *p*-process p-nuclei



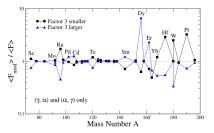
p-process nucleosynthesis

- most favored astrophysical scenario : O/Ne burning layers of massive stars during explosive or pre-explosive phase of Type II Supernovae. Temperature range 1.8 - 3.3 GK.
- Produced by (γ, n) reactions on s- or r-process seed nuclei. Followed by (γ, p) and (γ, α) and if favorable conditions exist, (p, γ) .
- Much less abundant than s- or r-process nuclei but non-negligible contribution to solar system abundance.

- Calculated abundances deviate from observed solar system abundances (from meteorite data).
- While most isotopes agree within a factor of 3 some don't (e.g. Mo, Ru, Sn, La, Gd)

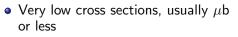


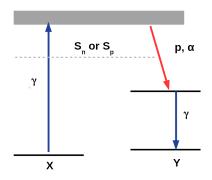
M. Rayet et al., Astron. Astrophys. 298, 517 (1995).


B. Rebeiro (IP2I, Lyon)

- Abundances calculated via vast network of reactions : $12 \le A \le 210,$ ~ 2000 nuclei and ~ 20000 reactions
- Various inputs \Rightarrow many uncertainties
 - astrophysical inputs
 - ★ Astrophysical sites
 - ★ temperature
 - ★ initial s- or r-process nuclei seed abundances
 - nuclear physics inputs
 - ★ nuclear masses and half lives
 - \star γ strength functions
 - * optical potential esp. α-OMP
 - ★ reaction rates

- Abundances calculated via vast network of reactions : $12 \le A \le 210$, ~ 2000 nuclei and ~ 20000 reactions
- Various inputs \Rightarrow many uncertainties
 - astrophysical inputs
 - ★ Astrophysical sites
 - ★ temperature
 - ★ initial s- or r-process nuclei seed abundances
 - nuclear physics inputs
 - nuclear masses and half lives
 - $\star \gamma$ strength functions
 - \star optical potential esp. α -OMP
 - ★ reaction rates
 - $A < 130 \ (\gamma, p)$ $A > 130 \ (\gamma, \alpha)$

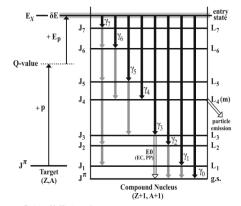

- Abundances calculated via vast network of reactions : $12 \le A \le 210,$ ~ 2000 nuclei and ~ 20000 reactions
- Various inputs \Rightarrow many uncertainties
 - astrophysical inputs
 - * Astrophysical sites
 - ★ temperature
 - ★ initial s- or r-process nuclei seed abundances
 - nuclear physics inputs
 - nuclear masses and half lives
 - \star γ strength functions
 - * optical potential esp. α -OMP
 - ★ reaction rates
 - $A < 130 \ (\gamma, p)$
 - $A>130~(\gamma,\alpha)$


W. Rapp et al., Astrophys. J. 653, 474 (2006)

Reaction rates need to be measured (where experimentally possible)

Measuring photodisintegration reaction rates

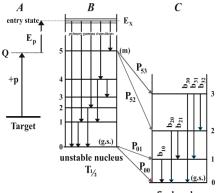
- Need extremely efficient set ups
- intense beams
- very low backgrounds
- Few facilities with intense γ beams
- In astrophysical environments, target nuclei in excited states.


Alternative : Measure reverse reaction i.e. capture cross sections

$$(\gamma, \mathbf{x})\leftrightarrows (\mathbf{x}, \gamma) \ \mathbf{x} = \mathbf{p}, \mathbf{n}, \alpha$$

Use principle of detailed balance to get photodisintegration rates.

Measuring (γ, \mathbf{x}) via (\mathbf{x}, γ)


- Excited states of nuclei accessible
 - astrophysically more relevant information
- p-process temperatures of 1.8 - 3.3 GK
 - (p,γ) : $1 \le E_p \le 5$ MeV
 - (α, γ) : $4 \le E_{\alpha} \le 12$ MeV
 - ► Low energy accelerators ⇒ intense beams
- Spread in excitation energy
 - target thickness
 - spread in beam energy
- # nuclei produced \Rightarrow cross section
 - count the nuclei
 count the photons

Sotirios V. Harissopulos Eur. Phys. J. Plus (2018) **133**: 332

Measuring (γ, \mathbf{x}) via (\mathbf{x}, γ)

- 1. Count the nuclei \Rightarrow Activation measurements
 - Irradiate then count
 - β decay to ground state or β decay to excited state followed by γ transition
 - Free from beam induced backgrounds
 - Most used technique
 - Decaying nucleus should have suitable half life (~ few days)
 - Limited number of isotopes that car be studied

final nucleus

Measuring (γ, \mathbf{x}) via (\mathbf{x}, γ)

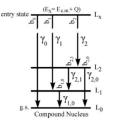
- 2. Count the photons \Rightarrow In beam measurements
 - angular distributions
 - Reaction yield from all γ -transitions feeding the ground state
 - ▶ fit angular distributions to Legendre polynomials to obtain absolute A₀ coefficients

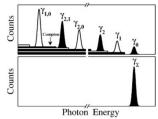
$$W(\theta) = A_0 \left(1 + \sum_k \alpha_k P_k(\cos(\theta)) \right)$$

 k_{max} depends on multipolarity of the $\gamma\text{-transition}$

- $A_0 \Rightarrow$ reaction yield \Rightarrow cross sections
- One needs to know detailed level scheme of the resultant nucleus
- To precisely determine angular distribution of γ₀ (γ from entry level to gs) ⇒ high efficiency detectors required.
- Data analysis extremely time consuming large number of γ-spectra need to be analyzed with often many γ-transitions
- $4\pi \ \gamma$ summing
 - Angle integrated cross sections

$4\pi \ \gamma$ summing technique

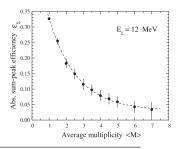

The technique


- Large volume detector to completely absorb the photons
- Long response time so different photos are indistinguishable
- Measure intensity of the summed peak to get total reaction cross section

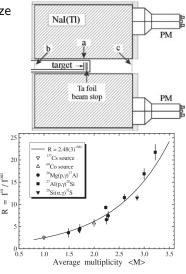
$$\sigma_T = \frac{I_{sum}}{\epsilon_{sum} \ N_t \ N_b}$$

Challenges

- Efficiency depends on often not well known multiplicity
- Ideal situation does not manifest in reality background, incomplete absorption, > 1 summed peak ...


A. SPYROU et al. PHYSICAL REVIEW C **76**, 015802 (2007)

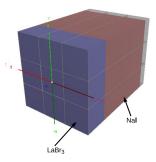
$4\pi \gamma$ summing technique


- Detector: Large volume Nal crystals
- Need additional techniques to characterize the detector's response function to multiplicity¹

•
$$R = \frac{I_a}{I_{edge}}$$
, $R = \alpha^M$

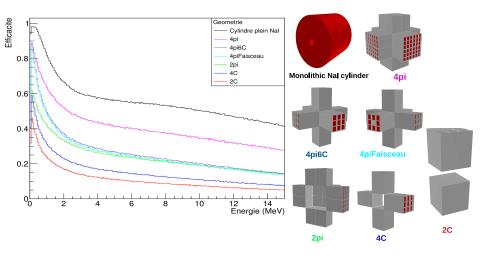
- Get ϵ_{sum} from Monte Carlo simulations
- for single detection unit, $\epsilon_{sum} \propto \frac{1}{M}$

¹Spyrou et al. PRC **76**, 015802 (2007)

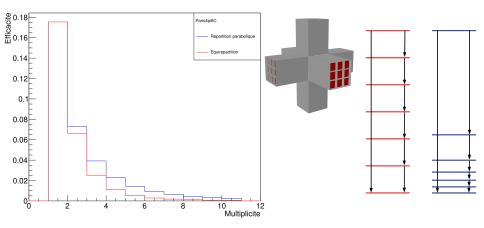


Ш

Ľ

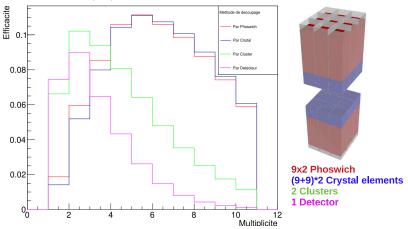

Why $4\pi \gamma$ summing with PARIS?

- Detector material (LaBr₃ or CeBr₃ and Nal) reasonably efficient for low and high energy photons.
- Can act as a 4π calorimeter if enough clusters used
- Provide information about the (often) unknown multiplicity of the γ cascades.
 - correlated with the number of crystals fired


These claims supported by Monte Carlo simulations

PARIS efficiency for different configurations

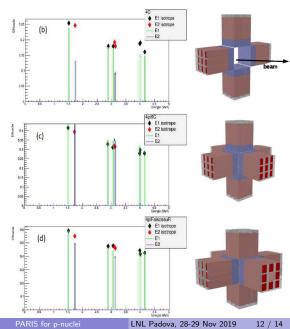
• IP2I Master's students : Arthur Henry and Vincent Lelasseux Supervised by O. Stezowski and C. Ducoin


PARIS efficiency: Energy level distribution

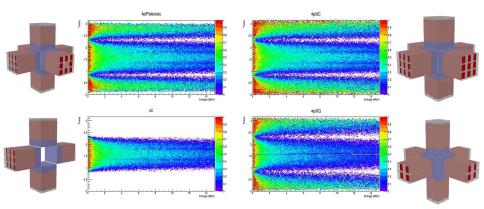
• Efficiency for reconstructing a 12 MeV gamma when the energy levels are spaced equally v/s a parabolic distributions of the energy levels.

PARIS v/s monolithic detectors

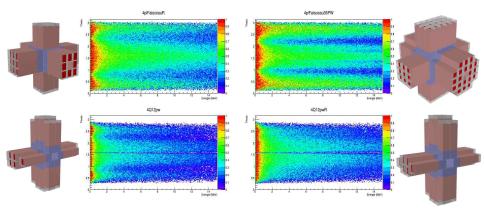
E(sum)=10 Mev



• Efficiency for reconstructing the summing peak for a 10 MeV gamma as a function of the number of cascading gammas


PARIS configurations: efficiency v/s multipolarity

- Most configurations suitable for γ transitions with multi polarity E1
- For E2 transitions, critical detection angles missing.
- Detectors at forward angles required.



PARIS configurations: Edge effects

- No events detected at the edges
- Will affect efficiency of detecting E2 $\gamma\text{-transitions}$

PARIS configurations: Edge effects

- Modified configurations allow for better uniform detection.
- With reasonable number of detectors, multipolarity of the transition might not be a huge problem.

Concluding remarks

- (p, γ) or (α, γ) measurements can be done with intense proton or alpha beams using low-energy accelerators.
- PARIS is promising candidate to apply the $4\pi~\gamma$ -summing technique
- Efficiency comparable to monolithic detectors
- Efficiency well balanced for low as well as high energy gammas
- High granularity of the clusters will allow to determine multipolarity of the transition
- Position of detectors along beam axis important
 - modified configurations could be an answer