Study of deformed and spherical 2⁺ states via Coulomb excitation and first time measurement of PDR in ³⁴Si

<u>R. Lica, S. Calinescu</u>, C. Borcea, R. Borcea, C. Costache, I. M. Harca, N. Marginean, R. Marginean, C. Mihai, R. E. Mihai, S. Pascu, C. Petrone, F. Rotaru, M. Stanoiu, A. Turturica

 <u>("Horia Hulubei" National Institute of Physics and Nuclear Engineering, Bucharest, Romania)</u>
 <u>O. Sorlin</u>, S. Grevy, J. C Thomas, C. Stodel, F. De Oliveira, M. Lewitowicz, L. Caceres, J. Piot, A. Lemasson, T. Roger (GANIL, CEA/DRF-CNRS/IN2P3, Caen, France)
 A. Maj, M. Ciemala (Institute of Nuclear Physics, PAN, 31-342 Kraków, Poland)
 M. J. G. Borge, J.A. Briz, J. Diaz-Ovejas, O. Tengblad, S. Vinals (Instituto de Estructura de la Materia, CSIC, Madrid, Spain)
 L.M. Fraile, J. Benito, J.R. Murias (Grupo de Fisica Nuclear, Universidad Complutense, Madrid, Spain)
 J. Mrazek (Nuclear Physics Institute of the Czech Academy of Sciences, Rez, Czech Republic)
 S. M. Lukyanov (Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia)

 I. Matea (Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, Orsay, France)
 L. Pellegri (iThemba LABS, Somerset West, South Africa)

PROPOSAL FOR AN EXPERIMENT

The physics case of ³⁴Si

- The recent experimental results on the 0⁺1,2 states in ³²Mg [1] and ³⁴Si [2] has brought further credit to the description in which a crossing between normal and intruder regime occurs between these two nuclei.
- ³⁴Si is at the verge of the IoI and deformed structures were found in its level scheme [2, 3].

[1] K. Wimmer et al. PRL 105, 252501 (2010).
[2] F. Rotaru et al. PRL 109, 092503 (2012).
[3] R. Lica et al. PRC 100, 034306 (2019).

Characterising the 0_2^+ in ³⁴Si at GANIL

GANIL/LISE projectile fragmentation ³⁶S at 77.5 MeV/A

26 (1) ms

56.3 (5) ms

³⁴AI

Q = 17.097 MeV Pn = 26 (4)%

26 44

4

FIG. 3. Part of the gamma energy spectrum following the implantation of ³⁴Si nuclei. The main peak corresponds to the known 591 keV transition in ³⁴Si. Peaks at 607 keV and 596 keV correspond to the $2_1^+ \rightarrow 0_2^+$ decay and the $(n,n'\gamma)$ reactions on the ⁷⁴Ge nuclei of EXOGAM, respectively. A zoom with 3 keV/bin is presented in the inset.

RAPID COMMUNICATIONS

42 transitions placed in the ³⁴Al level scheme ٠

Decay Station

IS530 experiment in 2015 at the ISOLDE Decay Station

Proposed measurement at LISE: ³⁴Si Coulomb excitation

B(E2; 3.3 MeV 0⁺₁→2⁺₁) = 85(33) e²fm⁴

(2) Spherical 5.3 MeV 2⁺ state identified in ³⁴Al decay and well produced (41%) in ³⁵P(-1p)³⁴Si [D. Sohler et al. to be published B(E2; 5.3 MeV $0^+_1 \rightarrow 2^+_3$) = 100 e²fm⁴ (Shell-Model)

Proposed measurement at LISE: ³⁴Si Coulomb excitation

Objectives

(1) Remeasure the $B(E2:0_1^+ \rightarrow 2_1^+)$ value as the previous error bar was large and we suspect some contamination from the feeding of an upper 2⁺ state.

- If this side-feeding is confirmed the B(E2) value, ³⁴Si may have the smallest B(E2) among other N=20 isotones.
- Determine more precisely the mixing amplitude of the 0_1^+ and 0_2^+ states in 34 Si.

(2) Determine the B(E2: $0_1^+ > 2_3^+$), which is predicted to be of the same amplitude as the B(E2: $0_2^+ -> 2_1^+$)

• Confirm the structure of the 2₃⁺ in ³⁴Si dominated by a proton hole configuration which corresponds to the spherical band.

Proposed measurement at LISE: ³⁴Si PDR study

- ³⁴Si presence of neutron oscillations at low excitation energy in (close or above Sn=7.5 MeV), that would give rise to E1 distribution.
- We propose the first time measurement of the PDR through isovector and isoscalar probes (²⁰⁸Pb, ¹²C).

Pygmy and giant dipole strength distribution in ³⁴Si using subtracted second random-phase approximation (SSRPA)

Transition density probability from 7.67 to 10.6 MeV, in which the presence of an almost pure neutron excitation is shown at the surface of the nucleus.

Calculations: Gambacurta, Grasso

Proposed measurement at LISE: ³⁴Si PDR study

- ³⁴Si presence of neutron oscillations at low excitation energy in (close or above Sn=7.5 MeV), that would give rise to E1 distribution.
- We propose the first time measurement of the PDR through isovector and isoscalar probes (²⁰⁸Pb, ¹²C).

Fig. 8. (Color online) (a) Cross sections for the excitation of $J^{\pi} = 1^{-}$ in ¹²⁴Sn deduced from the $(\alpha, \alpha' \gamma)$ experiment. (b) The B(E1)↑ strength distribution, obtained in (γ, γ') [60]. Adapted from [61].

"Consequently, if one wants to learn about the underlying structure of pygmy states and about their isospin character it is important to compare the excitation cross section of these states with **isovector probes (as photons)** and **isoscalar probes** as, for example, alpha particles or heavier ions as C and O below 30MeV/u."

A. Bracco, F. Crespi, E. Lanza, Eur. Phys. J. A (2015) 51: 99

Proposed experiment at LISE

(similar to previous ⁴⁴Ca, ⁴⁶Ar experiment)

46Ar @ 38.5 MeV/A + ²⁰⁸Pb (200 mg/cm²)

Extraction of $B(E2:0_1^+->2_1^+)$ in⁴⁶Ar from absolute cross section measurement and relative to the known B(E2) in ⁴⁴Ca

Beamtime request

³⁴Si @ 55 MeV/A + ²⁰⁸Pb / ¹²C

Estimated ³⁴Si production: 10⁵ s⁻¹

²⁰⁸Pb target: 200 mg/cm² (electromagnetic probe)
¹²C target: 146.4 mg/cm² (nuclear probe)

Rate estimations (DWEIKO, courtesy of S. Calinescu)

²⁰⁸ Pb target		¹² C target
2 ₁ ⁺ : (18.3 mb; 4.5 mb safe) -> 2.7 x 10 ³ evts / 18 UT		2 ₁ ⁺ : (26 mb) -> 3.1 x 10 ⁵ evts / 4 UT 2 ₃ ⁺ : (17.4 mb) -> 2.0 x 10 ⁵ evts / 4 UT
2 ₃ ⁺ : (14.3 mb; 2.3 mb safe) -> 1.1 x 10 ³ evts / 18 UT		
PDR: (1.5 mb safe)	-> 1.8 x 10 ³ evts / 18 UT	PDR: (difficult to estimate) ~ 100-200 events / 4 UT

Validation of the experimental method (3 UT): 36 S beam (well known 2_1^+ at 3.29 MeV, B(E2)=2.83(24) W.u.)

Beam tuning and adjustments of the setup (4 UT)

Total number of requested UT's: 25 + 4 = 29