

Potential coupling of PARIS/nu-ball2 cms

Jonathan Wilson, Matthieu Lebois, Nikola Jovancevic, Damien Thisse IPN Orsay

The v-ball spectrometer @ ALTO

v-ball international collaboration

153 researchers from 16 countries and 37 institutes, including 80 Ph.D students

v-ball experimental campaign

Nov. 2017-June 2018. 10 experiments 3200 hours of beam time

Innovations

- ✓ Hybrid Spectrometer (Ge/BGO/LaBr3) high resolution, high efficiency
- Coupling with the LICORNE directional neutron source
- ✓ Calorimetry for reaction studies/selection
- \checkmark Fully digital, 200 channels, including BGO
- ✓ Modes Triggered or Triggerlesss

24 Clover Ge + BGO 10 Coaxial Ge + BGO 20 LaBr3 or 36 PARIS phoswich

The v-ball2 International Collaboration

153 researchers from 16 different countries, 37 instutitues, including ~80 thesis students

v-ball experimental campaign (Nov. 2017-June 2018) 3200 hours of beam time delivered. 200Tb of data acquired

Heavy Ion Reaction γ spectroscopy:

- Half-life measurement and isomer spectroscopy in the neutron-rich deformed nucleus ¹⁶⁶Dy (1 week)
- Electromagnetic transition rates in the nucleus ¹³⁶Ce (1 week)
- Pinning down the structure of ⁶⁶Ni by 2n- and 2p-Heavy-lon transfer reactions and g-factor measurement (2 weeks)
- A study on the transition between seniority-type and collectivity excitations in the YRAST 4⁺ state of ²⁰⁶Po (1 week)
- Measurement of the super-allowed branching ratio of ¹⁰C (2 weeks)
- Feeding of low-energy structures of different deformations by the GDR decay: the nuBall array coupled to PARIS (1 week)

Neutron induced reaction γ spectroscopy:

- Spectroscopy of the neutron-rich fission fragments produced in the ²³⁸U(n,f) and ²³²Th(n,f) reactions (5 weeks)
- Spectroscopy above the shape isomer in ²³⁸U (2 weeks)

LICORNE/V-ball coupling principle

PARIS/v-ball coupling

Recent workshops and preparation for v-ball2

https://indico.in2p3.fr/event/17761/overview

Nu-ball2-workshop, November 2018, JRC-Geel, European Commission, Belgium

Nu-ball workshop and fission data analysis meeting, March 2019, University of Köln, Germany

Recent workshops and preparation for v-ball2

Nu-ball collaboration meeting and data analysis workshop, September 2019, University of Warsaw, Poland

Publications in progress

M. Rudigier et al. "Multi-quasiparticle subnanosecond isomers in 178W" Phys. Lett. B (comments for referees incorporated and resubmitted)

M. Lebois et al., "The nuball spectrometer", Nucl. Instrum. and Meth. A (undergoing minor corrections from the referee)

R. Canavan et al., "Half-life measurements in 164,166Dy using $\gamma - \gamma$ fast-timing spectroscopy with the v-Ball spectrometer", Phys. Rev. C (recently submitted)

R-B. Gerst et al., "Spectroscopy of neutron-rich 94Kr and structure of a new high-spin isomer"

Phys. Rev. C (first draft before submission)

D. Rutte, et al. Boutique neutrons advance 40Ar/39Ar geochronology Science Advances 11, Vol. 5, no. 9 (2019)

J.N. Wilson and M. Lebois,"Precision Gamma-Ray Spectroscopy of Fast-Neutron-Induced Fission with the Nu-Ball Spectrometer", Nuclear Physics News, Volume 28 - 4 (2018)

Just the start of production. Many more results in the pipeline. Analys is ongoing.

<u>Last 5 years</u> 11 journal articles 9 proceedings

The v-ball2 proposal for gpool resources

The nu-ball2 collaboration – (2019)

J.N. Wilson¹, M. Lebois¹, D. Thisse¹, N. Jovancevic¹, R. Canavan^{2,9}, R-B. Gerst⁸, A. Maj¹¹, M. Ciemala¹¹, M. Kmiecik¹¹, P.H. Regan^{2,9}, S. Leoni⁷, B. Fornal¹¹, T. Kröll¹⁸, S. Oberstedt²⁰, A. Oberstedt³², A. Dragic²⁷, I. Matea¹, O. Dorvaux¹⁷, G. Georgiev¹⁰, J. Ljungvall¹⁰, R. Lozeva¹⁰, M. Moukaddam¹⁷, S. Courtin¹⁷, D. Jenkins³⁰, P.J. Napiorkowski³⁶, K. Hadyńska-Klęk³⁶, E. Adamska⁴, P. Adsley¹, A. Algora⁵, L. Atanasova³³, M. Babo¹, K. Belvedere², J. Benito⁶, G. Benzoni⁷, A. Blazhev⁸, A. Boso⁹, S. Bottoni⁷, M. Bunce⁹, R. Chakma¹⁰, N. Cieplicka-Orynczak¹¹, L. Cortes^{12,16}, P.J. Davies¹³, C. Delafosse³⁴, M. Djongolov²⁸, D. Etasse³, M. Fallot¹⁴, A. Fijalkowska⁴, L. Fraile⁶, L. Gaudefroy³⁵, D. Gjestvang¹⁵, K. Gladnishki²⁸, A. Gottardo¹⁶, V. Guadilla¹⁴, G. Häfner⁸,¹⁰, M. Heine¹⁷, C. Henrich¹⁸, I. Homm¹⁸, F. Ibrahim¹, L. Iskra^{7,11}, P. Ivanov⁹, S. Jazwari^{2,9}, D. Knezevic²⁷, M. Komorowska³⁶, A. Korgul⁴, P. Koseoglou^{18,26}, T. Kurtukian-Nieto¹⁹, L. Lemeur¹⁴, A. Lopez-Martens¹⁰, I. Matea¹, K. Miernik⁴, J. Nemer¹, W. Paulsen¹⁵, M. Piersa⁴, Y. Popovitch¹, C. Porzio^{7,7b,29}, L. Qi¹, G. Rainovski²⁸, D. Ralet²¹, D. Reygadas-Tello^{22,31}, K. Rezynkina²³, M. Rudigier², V. Sanchez-Tembleque⁶, C. Schmitt¹⁷, P-A. Söderström¹⁸, K. Stoychev²⁸, C. Sürder¹⁸, G. Tocabens¹, V. Vedia⁶, D. Verney¹, N. Warr⁸, B. Wasilewska¹¹, J. Wiederhold¹⁸, M. Yavachova²⁵, F. Zeiser¹⁵, S. Zilliani^{7,7b}

94 authors, 36 different institutions in 12 different countries

v-ball2 campaign forseen 2021 - 2022

(Precise timing to be negociated with Jyvaskyla)

New Configurations

v-ball/PARIS

GDR studies. High energy gamma detection for light nuclei (ALTO high intensity ^{6,7}Li, ¹⁴C beams)

<u>v-ball/OUPS plunger and/or charged particle detector</u> RDM lifetimes

<u>v-ball/Fast Timing</u> 24 clovers coupled with 40 FATIMA for best hybrid array performance. Lifetime measurements 10-ps 10ns range for weakly populated states

v-ball/LICORNE

Improve fission technique: Reduce gamma backgrounds from the source and intrinsic target activity. More primary beam. Low density targets for DPM lifetime measurements. ²⁵²Cf IC

v-ball2 - Physics Cases

- 1. GDR studies with v-ball2/PARIS A. Maj, M. Ciemala, M. Kmiecik
- 2. Gamma decay from narrow unbound states in n-rich B, C, O and N isotopes: a testing ground for cluster and ab-initio theoretical approaches S. Leoni, B. Fornal
- 3. Direct measurement of carbon-clustering in 24Mg* M. Moukaddam, S. Courtin, D. Jenkins
- 4. Fusion-fission and quasi-fission studies and ternary fission studies with CORSET I.Matea, O. Dorveaux
- Further studies of the fission fragments produced in the ²³⁸U(n,f) reaction J.N. Wilson, M. Lebois
- 6. Lifetime measurements of neutron-rich fission fragments applying the DPM method Thorsten Kröll
- 7. v-ball2/FATIMA fast timing configuration new opportunities P.H. Regan, Z. Podolyak
- 8. Investigating the de-excitation process in nuclear fission S. Oberstedt, A .Oberstedt
- 9. Two photon decay in 72 Ge A. Dragic
- 10. Picosecond lifetimes with $\nu\textsc{-ball2}$ and the OUPS plunger J. Ljungvall
- 11. Electric quadrupole strength studies in odd-mass nuclei G. Georgiev, A. Stutchberry
- 12. Nuclear moments of short-lived excited states by TDRIV measurements G. Georgiev, A. Stutchbery
- 13. Coulomb excitation of the super-deformed band in 40Ca P.J. Napiorkowski, K. Hadyńska-Klęk

v-ball2 - Physics Cases

- 1. GDR studies with v-ball2/PARIS A. Maj, M. Ciemala, M. Kmiecik
- 2. Gamma decay from narrow unbound states in n-rich B, C, O and N isotopes: a testing ground for cluster and ab-initio theoretical approaches S. Leoni, B. Fornal
- 3. Direct measurement of carbon-clustering in 24Mg* M. Moukaddam, S. Courtin, D. Jenkins
- Fusion-fission and quasi-fission studies and ternary fission studies with CORSET I.Matea, O. Dorveaux
- Further studies of the fission fragments produced in the ²³⁸U(n,f) reaction J.N. Wilson, M. Lebois
- 6. Lifetime measurements of neutron-rich fission fragments applying the DPM method Thorsten Kröll
- 7. v-ball2/FATIMA fast timing configuration new opportunities P.H. Regan, Z. Podolyak
- 8. Investigating the de-excitation process in nuclear fission S. Oberstedt, A .Oberstedt
- 9. Two photon decay in 72 Ge A. Dragic
- 10. Picosecond lifetimes with ν -ball2 and the OUPS plunger J. Ljungvall
- 11. Electric quadrupole strength studies in odd-mass nuclei G. Georgiev, A. Stutchberry
- 12. Nuclear moments of short-lived excited states by TDRIV measurements G. Georgiev, A. Stutchbery
- 13. Coulomb excitation of the super-deformed band in 40Ca P.J. Napiorkowski, K. Hadyńska-Klęk

v-ball2/PARIS coupling

Perfect for:

- GDR, PDR studies
- Studies of light nuclei
- 4π calorimetry (Reaction mechanism studies)

216 FASTER channels total 96 MOSAHR 14-bit 125 MHz 120 CARAS 12-bit 500 MHz

(Need an extra 42 CARAS = 29 k euro)

Extra capabilities:

- Neutron/gamma discrimination via TOF
- Some fast timing capabilities (>70 ps lifetimes)

v-ball2/PARIS coupling

216 FASTER channels total 96 MOSAHR 14-bit 125 MHz 120 CARAS 12-bit 500 MHz

(Need an extra 42 CARAS = 29 k euro)

Perfect for:

- GDR, PDR studies
- Studies of light nuclei
- 4π calorimetry (Reaction mechanism studies)
- High spin studies?

Extra capabilities:

- Neutron/gamma discrimination via TOF
- Some fast timing capabilities (>70 ps lifetimes)

Charged particle detection systems

ANU LYSO detector

Warsaw DSSD detector

Milano TRACE detectors

- Requires 1 or 2 newly developed FASTER multichannel digitizer cards
- FULLY supported by David Etasse and his team (LPC Caen)

Calorimetry New Fission Observables and Correlations

Calorimeter (BGO + Ge + LaBr3)

Gamma multiplicity distribution Gamma sum energy distribution Average gamma multiplicity, $\langle M_{\gamma} \rangle$ Average total gamma energy, $\langle E_{tot} \rangle$ High energy gamma spectra Average neutron multiplicity Ge detectors only

Correlated with detected fragment A,Z (and partners)

+ Isomeric Ratios

²⁵²Cf (SF)
²³⁸U(n,f) @ 1.7 and 3.5 MeV
²³²Th(n,f) @ 1.7 MeV

v-ball calorimetry (sources)

¹⁵²Eu beta decay events

²⁵²Cf fission events

ΗK

15

5

10

 γ multiplicity

20

10⁵

10⁴

10³

10²

10

25

Gamma multiplicity distributions

²³⁸U(n,f) Gamma Multiplicity Distributions - Xe isotopes

High Energy gamma-rays produced in fission

High Energy Gamma Spectra (BGO) correlated with A/Z (and partners)

²³⁸U(n,f)

High Energy Gamma Spectrum Hardness

v-bar positevly correlated with M_v

v-ball2 + $4\pi^{252}$ Cf source + <u>Segmented</u> Ionisation chamber

