

Stage B: Allo scoperta del nucleo atomico: l'esperimento di Rutherford

Giacomo Brunello Anna Fiorentin Leonardo Schiavo Matteo Stefanelli

Stage C: Informatica e fisica sperimentale

Alessandro Benetton Nicole Busdon Matteo Catania Nicola Vianello

OUTLINE

1. Web site in JOOMLA

2. Rutherford's Experiment

- 2.1 History
- 2.2 The Experiment
- 2.3 Cross Section and Kinematic Factor
- 2.4 Graphs

3. Experimental setup

- 3.1 Particles Accelerator
- 3.2 Beam line
- 3.3 Detector

4. Electronics

- 4.1 Pulse generator
- 4.2 Preamplifier
- 4.3 Amplifier
- 4.4 ADC / MCA

5. Computing

- 5.1 Binary
- 5.2 DAQ
- 5.3 Logbook

6. Softwares

- 6.1 LabVIEW
- 6.2 Excel
- 6.3 Gnuplot
- 6.4 Root
- 6.5 XRump

7. Spectroscopy and Results

- 7.1 Spectroscopy
- 7.2 Calibration
- 7.3 Normalized Yield vs Energy
- 7.4 Normalized Yield vs Scattering Angle

INFN

Istituto Nazionale di Fisica Nucleare

8. Interaction Alpha Matters

- 8.1 Alpha Source
- 8.2 Activity
- 8.3 Calibration
- 8.4 Spectra

WEB SITE ADMINISTRATORS

Web site link: http://jmtest.lnl.infn.it/~stage/administrator/index.php

ł	User Manager: Users					
Use	rs User Groups Viewing Access Levels	User Notes	Note Categories			
Sea	rch Users Search Rese	et				Filter Users by
	Name		User Name	Enabled	Activated	User Groups
	Alessandro Benetton		benetton	0	•	Super Users
	Nicole Busdon	-	busdon	0	0	Super Users
	Nicola Vianello	Ģ	vianello	•	•	Super Users
	Matteo Catania	Ģ	catania	0	0	Super Users
	Matteo Stefanelli	Ģ	stefanelli	•	•	Super Users
	Giacomo Brunello	G	brunello	0	0	Super Users
	Anna Fiorentin	Ģ	fiorentin	•	•	Super Users
	Siciliano Marco	6	siciliano	0	•	Super Users
	Leonardo Schiavo	LNL - FridayJu	schiavo uly 1st 2016	0	0	Super Users

INFN

WEBSITE STRUCTURE

lstituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Legnaro (LNL)

Stage 2016 (B e C): "Alla scoperta del nucleo atomico: l'esperimento di Rutherford" "Informatica e fisica sperimentale"

Every page presents:

- ➢Drop-down menu
- ➤Images
- ➤Articles
- ➢ Possible tables and spectra

CREATION OF ARTICLES

Article Manager: Add New Article

Save Save & Close Save & New Cancel Help

CREATION OF MENU

lstituto Nazionale di Fisica Nucleare

INFN

Menu Item Type *	Single Article Select	
Menu Title *	Lessons	
Alias		
Note		
Link	index.php?option=com_content&view=article	It is important to choose some
Status	Published 🜉	essential features:
Access	Public	
Menu Location *	Тор	➤ Title
Parent Item	- REPOSITORY	>Location
Ordering	Ordering will be available after saving	➢Parent Item
Target Window	Parent 💌	≻Language
Default Page	No No Ves	

ATOMIC MODELS

di Fisica Nucleare

Plum Pudding Model J. J. Thomson 1904 soon after the discovery of the electron

INFN

Rutherford Model E. Rutherford 1911 after the experiment of H. W. Geiger and E. Marsden

HOW DID THEY GET TO THIS RESULT?

RUTHERFORD EXPERIMENT RBS (Rutherford BackScattering)

Alpha particle

lstituto Nazionale di Fisica Nucleare

"a small fraction of the incident a particles, about 1 in 20,000 were turned through an average angle of 90 degrees in passing through a layer of gold-foil about 0.00004 cm thick [...] the most probable angle of deflection [...] was about 0.87° [...] the chance of an a particle being deflected through 90° is vanishingly small"

LNL - Friday July 1st 2016

E. Rutherford, 1911

RUTHERFORD CROSS SECTION AND KINEMATIC FACTOR

THEORETICAL CROSS SECTION (I) INFN

cross section vs energy

cross section vs scattering angle

Energy [MeV]	Cross section [mb]	
2,0	17,16	
1,8	21,17	
1,6	26,79	
1,4	35,00	
1,2	47,63	
1,0	68,59 INL - Frida	v July 1st 2016
		, sar, 13t 2010

theta [°]	Cross section [mb]
20,0	17,16
30,0	18,53
40,0	20,69
50,0	23,91
60,0	28,68
70,0	35,82
71,5	37,18 ¹²

THEORETICAL CROSS SECTION (II) INFN

di Fisica Nucleare

Istituto Nazionale

Cross section vs target(Z)

AN 2000

INFN

di Fisica Nucleare

- The AN2000 is an electrostatic accelerator (with a voltage terminal of 2MV)
- It can accelerate <u>protons</u> or <u>helium ions</u> (alpha particles)

 Using the AN2000 accelerator, detailed measurements for the <u>elemental composition analysis of any material</u> can be performed, by bombarding samples and identifying the particles which are produced in <u>the beam interaction</u> with the target.

BEAM LINE

/ Istituto Nazionale di Fisica Nucleare

INFN

- Beam Line: a line with a few mm transverse size
- Beam line at <u>60</u>°
- Beam: ⁴He⁺
 (alpha particles)
- Pressure: 10⁻⁶ mbar (vacuum, which is produced by 2 pumps under the reaction chamber)

DETECTOR

- The detector used in the experiment is an instrument which measures the <u>time</u> of the passage of a particle and the <u>energy</u> of that particle
- Characteristics:
- 1. Sensitivity
- 2. Detector response
- 3. Energy resolution
- 4. Detector efficiency
- 5. Dead time

INFN

SEMICONDUCTORS

/ Istituto Nazionale di Fisica Nucleare

- At temperatures near 0 K, semiconductors are similar to <u>insulators</u>, while, when the temperatures are higher, they can conduct current (as the <u>conductors</u>)
- **Doping** (electron and electron holes):
- 1. n-doping (more e⁻ than e⁻ holes)
- 2. p-doping (more e⁻ holes than e⁻)

Polarized pn junction

INFN

SILICON DETECTOR

- The detector was: <u>solid</u>, <u>semiconductor</u> and made of <u>silicon</u>.
- **Power supply**: 40 V
- Active area: 0,13 cm²
- Solid angle: 2 msr
- **Resolution**: 13.5 keV (at the energy of pulser: 2.38 MeV)
- **Resolution** (*with* α *source*): 36 keV (at the energy of Am-241: 5.484 MeV)

INFN

PULSE GENERATOR

It is a device which generates a pulse used to determine the channel corresponding to a defined amount of energy. This appliance doesn't belong to acquisition chain but it is an important device which allows to know if acquisition chain works accurately and it is useful to determine detector resolution.

INFN

ACQUISITION CHAIN

The main purpose of the acquisition chain is to achieve some information like:

- Rate (number of counts)
- Registered energy
- Detection time

Basic electronic chain is composed of:

ADC: Analog to Digital Converter MCA: MultiChannel Analyzer INFN

PREAMPLIFIER

It is a device situated near the detector: it overturns the signal generated by the detector and has the essential function to return as output a signal whose width is proportional to the energy released by the radiation in the detector.

INFN

Istituto Nazionale di Fisica Nucleare

Gain: -1

AMPLIFIER

It is a device which filters the signal coming from the preamplifier reducing electronic noise. It shapes the signal to make it more suitable for Analog to Digital Converter (ADC):

• Amplitude proportional to the energy deposited from radiation

INFN

lstituto Nazionale di Fisica Nucleare

- Gaussian waveform
- Rising time greater than 500 ns

In most cases the rising time of signals coming out from the preamplifier and entering the amplifier reflects charge-collection time.

Used gain:

- 100 (in measurements with beam)
- 20 (in measurements with source)

LNL - Friday July 1st 2016

T=5μs 24

ANALOG TO DIGITAL CONVERTER (ADC) & MULTICHANNEL (MCA)

 Istituto Nazionale di Fisica Nucleare

It is a device which converts analog signal to digital signal. It returns a series of bits (0/1), which will be read by Data Acquisition System (DAQ).

Used ADC: •Multichannel: 0÷1023 channel

•Samples frequency: 10MHz

LNL - Friday July 1st 2016

BINARY VIEW OF THE RESULTS

Acquired data were saved in a binary file with the extension .rbs (Rutherford BackScattering)

Add	Binary													
000 000	00000000	00000000	00000000	00000101	00000000	00000000	00000000	00000000	00010000	00100001	00010010	00010000	00000000	00000001
000 016	11101111	11011101	11101101	11101011	00000000	00000000	00000000	00001011	00000000	00000000	00000000	00000010	00000000	00000000
000 032	01010000	01000011	00101101	01010010	01010101	01001101	01010000	00100000	01100100	01100001	01110100	01100001	00100000	01100110
000 0 48	01100101	00100000	01011011	01110110	00100000	00110001	00101110	00110000	01011101	00000000	00000000	00000000	11110011	01010110
000064	00000000	00000000	00000000	00001100	00000000	00000000	00000001	0000001	00000000	00000000	00000000	00100000	01001010	01010010
000 080	00110000	00110010	00110101	00100000	00100000	01010010	01000010	01010011	00100000	00100000	00100000	00100000	01000001	01110101
000 096	01101001	00100000	01110100	01101000	01100101	01110100	01100001	00100000	00110111	00110001	00101110	00110101	11111101	11001110
000112	00000000	00000000	00000000	00010000	00000000	00000000	0000001	00000010	00000000	00000000	00000000	00101111	01110100	01110010
000128	00100000	01110100	01101001	01101101	01100101	00111010	00110101	00110100	00110010	00101110	00110110	00110000	00001001	01101100
000144	01100101	00100000	01110100	01101001	01101101	01100101	00111010	00110101	00110100	00110000	00101110	00110000	00110000	00001001
000160	01110101	01101110	01110100	01100101	01110010	00110010	00111010	00110000	00101110	00110000	00110000	00000000	01111101	10110100
000176	00000000	00000000	00000000	00001001	00000000	00000000	00000001	00000011	00000000	00000000	00000000	00010001	00110110	00101111
000192	00101111	00110010	00110000	00110001	00110110	00001001	00110001	00111010	00110010	00111001	00100000	01010000	01001101	01101100
000208	11100100	11101111	11100001	01111111	00000000	00000000	00000000	00001001	00000000	00000000	00000001	00010001	00111111	11111111
000 2 2 4	00000000	00000000	00000000	00000010	01000000	10000000	00010101	01001101	00000000	00000000	00000000	00000001	01000001	00000000
000240	01000001	01110000	00000000	00000000	11111101	00001111	01010000	01100110	00000000	00000000	00000000	00000111	00000000	00000000
000256	01000000	00100010	01011000	10111111	01000010	00011010	01000001	10111001	00000000	00000000	00000000	00000000	01000001	10010000
000 272	00111100	00110011	01100100	01101111	00000000	00000000	00000000	00001000	00000000	00000000	00000001	00100000	00000000	00000000
000288	00000000	00000000	00000000	00000000	01000010	10001111	00000000	00000000	00000000	00000000	00000000	00000000	00111111	10000000

INFN

GUI (Graphic User Interface) DAQ (Data AcQuisition)

 Istituto Nazionale di Fisica Nucleare

This is the interface used to acquire data from the detector

T	hursday, Jun	e 23, 20	16 5:14:18 PM	B	0	true tine (iec)	0.0	0000
					0	No time (sec)	0.0	DOOD pCoulor
H						369.00		Start [F1]
1						JR12041	cond counter	Change Calibration
6500.0				Pice 0		54400		Quit e Init
5500.0 -						Am Cu Pu	-	
5000.0-			h			group name and	tercept(in KeV)	Insert data
4500.0-						INSS Instrument address (#n)	dope	Save (F6)
3500.0 -						1	2.5367	Eittern
3000.0 -						(1500		New measurement sess
2500.0-						ROI		EditCalb FDIT ROL
1500.0-						<u>[</u>	J	INSERT ROL
1000.0-			N	/V		2		Periodic Table
0.0-	N L							Internal
415	420 425 430 435	440 445 45	50 455 460 465 470	475 460 465	490 495			0
hannels	AUVIN	Cursor 0	444.63 0.00	10 20 0-	Energy			About
DRECET	*N* 10+01	10001	Actes and a feet		1112.077			CONDOM
(from 0 to 99)	(from 0 to 6) channel	l vsts	Calbration	element	t-> Channel channel			STOP
0	00 0000		Jo.00 Cal (edge		0	3 j.P. 80	trere,	(6145)

Every time a Run is saved the software creates a new file and increments the run number.

The number of files saved in our experiment is 18.

The average file size is 1,64 kB so the total size is 29,2 kB.

- JR12025.rbs
- <u>JR12026.rbs</u>
- <u>JR12027.rbs</u>
- <u>JR12028.rbs</u>
- JR12029.rbs
- <u>JR12030.rbs</u>
- JR12031.rbs
- <u>JR12032.rbs</u>
- JR12033.rbs
- <u>JR12034.rbs</u>
- <u>JR12035.rbs</u>
- JR12036.rbs
- JR12037.rbs
- JR12038.rbs
- JR12040.rbs
- JR12041.rbs
- JR12045.rbs
- JR12046.rbs

Different Status Of A Run

During every run the DAQ can have multiple status

INFN

The Logbook

The Logbook is the official document that reports the acquisition settings and everything happened during an experiment.

ESPERIMENTO DI RUTHERFORD

Giovedì 23 giugno 2016

Acceleratore AN2000

Linea di fascio: +60°

Operatori: Gianluigi Maggioni, Leonardo La Torre Persone: Matteo Stefanelli, Giacomo Brunello, Anna Fiorentin, Leonardo Schiavo, Nicola Vianello, Nicole Busdon, Matteo Catania, Alessandro Benetton

Materiale: acceleratore AN 2000, nuclei di elio 4He+, energia (< 2MeV), corrente (12 nA), bersaglio (film sottili), rivelatore (a stato solido semiconduttore di silicio, area attiva: xx cm^2, angolo: 90°< xx < 180°, tensione: xx V, distanza: x m, angolo solido: xx mrad), preamplificatore (guadagno: -1), amplificatore (572), ADC, MCA (range: 1024)

_		
	Output File Name: jr <numerodirur< td=""><td>⊳.rbs</td></numerodirur<>	⊳.rbs
	Numero run: 120 Nome file: jr120 .rbs Conteggi: Start time: Target: Energia: MeV Angolo misurato: Angolo di scattering: Carica: nA Corrente: End time:	Acquisition Settings
	Numero run: 12019 Nome file: jr12019.rbs Conteggi: 10040 Start time: 11:32 Target: Au/Si Energia: 2 MeV Angolo misurato: 20° Angolo di scattering: 160° Carica: 7.67 uC Corrente: 12 nA End time: 11:42	Run Data
	Numero run: 12020 Nome file: jr12020.rbs Conteggi: Start time: 11:5 Target: Au/Si Energia: 2MeV Angolo misurato: 20° Angolo di scattering: 160° Carica: End time: *ERRORE* *RUN NON VALIDA*	LNL - Friday July 1st 2016

INFN

LABVIEW

LabVIEW programs are called virtual instruments, or VIs, because their appearance and operation imitate physical instruments, such as oscilloscopes and multimeters. You can use LabVIEW to communicate with hardware such as data acquisition, vision, and motion control devices [1].

[1]: LabVIEW Manual

Laboratori

Legnaro

Nazionali di

INFN

Excel is a software that allows the user to work on spreadsheets. It features calculation, graphing tools, pivot tables.

An example of spreadsheet in Excel

6	Calibri	11 · A		-	·· 音可	esto a capo	a al centro r	Generale	. 000	۰ وور ور	Forma	 attazione	Formatta	Stili	Inserisci Eli	mina Forr	mato 2	C · 27	a Trova	e
7										JO •,0	condia	zionale + c	ome tabella	• cella •	*	÷ .	- <	2 e filtra	selezio	na -
	La Caratter	e 	la l	-	Allineamen	to	1	a INI	umeri	Lai			Still			elle		M10	difica	
1	AI VC	Jx)															
1	punto a	-																_		23
1	Α	В	С	D	E	F	G	н	1		J	К	L	M	N		0	Р	Q	
		-	-										_				-		_	Â
		M1 (MeV)	M2 (MeV)	Θ (rad)	sen^2(Θ)	cos(Θ)	к	E0 (MeV)	E1 (Me)	/) Car	nale	z								
	Au	4	196	2,791111	0,117889	-0,93921	0,924	2	1,8	48	715	7	79							
	Ge	4	73	2,791111	0,117889	-0,93921	0,808	2	1,6	17	625	3	2							
	N	4	14	2,791111	0,117889	-0,93921	0,320	2	0,6	39	238		7							
																				=
					1															-
					Canal	e-E1														-
		2 000							-											- 1
1		1.800 -	E1 = 0	,0025(char	nel) + 0,036	53 🔺			-											
2		1,600		R* =	1	\sim			-											- 1
1		1,400																		
		1,200			/															
5		1,000			/		🔶 Ca	in ale-E1												
7		0,800					— Lir	neare (Cana	le-E1)											
8		0,600		¥.																
9		0,400																		
0		0,200																		
1		0,000 +	200																	
2		0	200	40	0 000	5 800	,													
3																				
1		-																		
5	ulata and	Channel	E1 (MeV)	K	M2															
7	Unknown 1	433	1,119	0,559	30															
2	UTIKHUWH Z	280	0,730	0,308	10															
9																				
0																				
1	Risoluzione (MeV)	0,0135																		
2	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																			
3				RUN JR120	046									RUN JE	12037					
1				E-many -	() (~								Enri	an At					
5				Energy	(Mev)								Ener	gy (IVI	20)				
		0.5	10	1	e	2.0	2.5	2.0			_	0.5	1.0		1.4	2.0		25	21	<u>م</u>

GNUPLOT

Laboratori

Legnaro

Nazionali di

Gnuplot is an open source program that allows the realization of two- and three-dimensional plots of functions and data.

INFN

ROOT is a scientific software framework. It provides all the functionalities needed to deal with big data processing, statistical analysis, visualisation and storage. It is mainly written in C^{++} [1].

ROOT

Title: Rutherford's experiment at AN2000 accelerator in INFN Legnaro National	Laboratory
Date: Thursday, June 23th 2016	All the necessary
Authors: Nicola Vianello, Nicole Busdon, Matteo Catania, Alessandro Benettor	information is written
Authors: Giacomo Brunello, Anna Fiorentin, Leonardo Schiavo, Matteo Stefane.	
Descriptions: Rutherford cross section versus energy	here in form of
Use in ROOT: .x stage2016_macroE.C	comment (it has
Output filename: stage2016_macroE.pdf	nothing to do with the
Input filename: no	code)
*/	
//include files	
<pre>#include <iostream></iostream></pre>	
The main function is the	
// Main function hody of the program	
void stage2016_macroE() {	
gStyle->SetOptStat(0);	
Declaration of an ar	rav
float $x[6]=\{1.0, 1.2, 1.4, 1.6, 1.8, 2.0\}$; containing 6 variable	2S

INFN

XRump is used to analyze the collected spectra (.rbs files)

XRump interface

🚰 XRump	
File/Plot Window Layout Edit Variables Help	
/	
RUMP - RBS Analysis and Simulation Package [v. 4.00(beta)] (c) 1988-2002 Michael Thompson, Larry Doolittle (c) 1988-2002 Computer Graphic Service, Ltd. All rights reserved Serial Number: Invalid license Revision Level: Version 0.950 Revision Date: Mon Jun 17 20:03:26 2013 Compile Date: Jun 17 2013 20:03:26	
Loading atomic data: C:\Program Files\cgs\\RUMP\Data\atom4.dat Loading Ziegler data: C:\Program Files\cgs\\RUMP\Data\pscoef.dat Loading Kalbitzer data: 8 dE/dx entries: C:\Program Files\cgs\\RUMP\Data\newstop .kal Loading atomic density table: C:\Program Files\cgs\\RUMP\Data\density.tab	
Next command: /* Rump initial configuration I want a cookie!! alias t dev -text Your wish? alias g dev -graph Yes Master?	
At your service! /* Plotting parameters You called? SYMBOLMAP 1 FilledTriangle 1.25 2 FilledSquare 1.25 3 FilledStar 1 25	
Symbol # to set (quit): 4 FilledCircle 1.25 5 OpenTriangle 1 6 OpenSqua	
Symbol # to set (quit): 7 OpenDiamond 1 8 OpenStar 1 9 OpenCirc	
Symbol # to set (quit): 10 Asterisk 1 11 Cross 1 12 X	
Symbol \$ to set (quit): 13 FilledLeftTria 1 14 FilledRightT 1 ∕ Feed me! hcopy on Vhoopee! ltype 1 pen -1	
INFO: Macro completed normally Up periscope!	

A simple manual

INFN

SPECTROSCOPY

CALIBRATION WITH DIFFERENT MATERIALS

SPECTRA WITH DIFFERENT ... INFN

/ Istituto Nazionale di Fisica Nucleare

SCATTERING ANGLES

ENERGIES

	Run	Normalized Yield	E (MeV)	√Yn
	12025	2378	2,0	48,77
	12032	3341	1,8	57,80
	12033	4181	1,6	64,66
	12034	5331	1,4	73,01
	12035	7293	1,2	85 40
	12036	10187	1,0	100.02
.si	: 2016			140,93

RESULTS I

INFN Istituto Nazionale di Fisica Nucleare

NORMALIZED YIELD VS ENERGY

NORMALIZED YIELD VS SCATTERING ANGLE

RESULTS II

ACTIVITY

Sources used:

- •Triple source
- •Unknown source

Radionuclide	half-life	Important alpha articles energies MeV
Americium-241	433 years	5.442 (12.5%), 5.484 (85.2%)
Curium-244	17.8 years	5.763 (23.6%), 5.806 (76.4%)
Plutonium-239	24100 years	5.103 (11%), 5.142 (15%), 5.155 (73%)

LNL - Friday July 1st 2016 From: "http://www.nndc.bnl.gov/chart/"

INFN

CALIBRATION OF MCA WITH THE ALPHA SOURCE (I)

LNL - Friday July 1st 2016

INFN

CALIBRATION OF MCA WITH THE ALPHA SOURCE (II)

Unknown source: Americiumst 2016

0

200

600

Channel

400

800

INTERACTION ALPHA-MYLAR

Triple source (Am-241, Cm-244, Pu-239) with MYLAR Spectra of triple source (Am-241, Cm-244, Pu-239) Thickness: 6 μm Run: JR12045

with MYLAR and triple source LINEAR ABSORPTION COEFFICIENT: without MYLAR $-\Delta E / \Delta x = 115 \text{ keV}/\mu m$ Run: JR12041 700 7000 600 6000 500 Yield 5000 Yield 400 4000 300 3000 200 2000100 1000

1000 LNL 1200 ay July 1st 20300

Resolution for Americium = 36keV (gain=20)

350

400

Channel

INFN

Istituto Nazionale di Fisica Nucleare

48

500

450

CONCLUSIONS

- Development of a website in JOOMLA
- > Determination of theoretical cross section through the Rutherford's experience
- Study of the beam line and of the electronic chain
- Comprehension of the experimental method and of the data acquisition with the employment of different analysis software
- Study of the interaction alpha-material to establish unknown material source

INFN

Thank you for your attention!

