Radioisotopi per la Medicina

Adriano Duatti

Dipartimento di Scienze Chimiche e Farmaceutiche

Stituto Nazionale di Fisica Nucleare (LNL-INFN)

Università di Ferrara, 44121 Ferrara, Italy

Il nucleo atomico

Radioattività

Decadimento γ

Radioattività

protone neutrone

Annichilazione Materia-Antimateria

DAL FENOTIPO AL CHEMOTIPO

MICROSCOPIA OTTICA AD ALTA RISOLUZIONE DI CELLULE ISOLATE

Recettori

4D Misura In vivo della Densità dei Recettori Dopaminergici (D2) nel Sistema Nervoso Centrale

CARDIOTOMOGRAFIA 4D

TOMOGRAFIA CEREBRALE 4D

RADIOLOGIA vs IMAGING MOLECOLARE

Immagine Anatomica

Immagine Funzionale

Single Photon Emission Computed Tomography (SPECT)

e+

TOMOGRAFI IBRIDI

DIAGNOSTICA CON I RADIOFARMACI

CARDIOTOMOGRAFIA NUCLEARE

CARDIAC TOMOGRAPHY

Distribuzione del ⁸²Rb⁺ nel Miocardio

TOMOGRAFIA CEREBRALE IBRIDA (PET/CT)

Nuclear Reactor

Ciclotrone

Forza di Lorentz

La facility SPES

Technetium-99m

Il Generatore di Mo-99/Tc-99m

L'Anione Pertechnetato

[^{99m}TcO₄]⁻

Imaging della Tiroide con Tc-99m

Decadimento del Fluoro-18

Produzione del Fluoro-18

Sezione d'urto

 $(1 \text{ barn} = 1 \cdot 10^{-24} \text{ cm}^{2})$

Produzione di [¹⁸F]-FDG

Target Liquidi

[¹⁸O]OH₂

[¹⁸F]Fluoruro

2-[¹⁸F]Fluoro-desossiglucosio ([¹⁸F]-FDG)

Produzione di [¹⁸F]-FDG

CELLA CALDA

2-[¹⁸F]Fluoro-desossiglucosio ([¹⁸F]-FDG)

2-[¹⁸F]Fluoro-2-desossiglucosio [¹⁸F-FDG]

F-18-FDG

TERAPIA CON RADIONUCLIDI

[¹³¹]]oduro

Copper-64

Cyclotron Production = ${}^{64}Ni(p,n){}^{64}Cu$ **Modes of decay** = β^+ (17%), β^- (39%), e⁻ (Auger) **t**_{1/2} = 12.701 h

Rame-64

Production = ${}^{64}Ni(p,n){}^{64}Cu$ **Modes of decay** = β^+ (17%), β^- (39%), $t_{1/2}$ = 12.701 h

Cu-64

BERSAGLI

Cu-64

Le Molteplici Funzioni Biologiche del Rame

Imaging delle Neoplasie Cerebrali con Cu-64

Imaging delle Neoplasie Cerebrali con Cu-64

Bladder Cancer

⁶⁴Cu²⁺ in prostate cancer

⁶⁴Cu²⁺

Therapy of Glioma with Cu-64 Dichloride

Therapy of Glioma with Cu-64 Dichloride

Small-Animal Scanners

Resolution: 0.35 mm

Imaging della Tiroide

Small-Animal Scanners

Small-Animal Scanners

Small Animal Scanners

SPIN 1/2

SPIN 1/2

MAGNETIZZAZIONE

Microscopic

Macroscopic

NMR

Gd-MRI vs. ¹⁸F-FDG-PET

¹⁹F-MRI/¹⁸F-PET

GRAZIE