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The SPES project (Selective Production of xo’ri

Where? Nature and its laws &

How take a picture of a world record?




SP=S @ Laboratori Nazionali di Legnaro
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WhY? Demand & Supply
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The SP:S project (Selective Production of xo

SPES-a

The cyclotron and \ the ISOL
related infrastructure. accelerati

SPES-y

The production of
radionuclides for applications.

IC@LPHHKM

SPES exoiic beams for medicine

&

SPES-6

The multidisciplinary
neutron sources.



SPES-a: The cyclofron and related infrastructure.
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Accelerator type Cyclotron AVF with 4 sectors,

Resistive Magnet

High Power Cycloiron:

Several application at LNL
v Fundamental Research:
« SPES and its phases

Particle Protons (H- accelerated)
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Energy range 35-70 MeV

Max Current Intensity 700 A (variable within the
range 1pA-700pA)

Extraction Dual stripping extraction

Max Magnetic Field 1.6T(Bo=1T)

RF System nr. 2 delta cavities; harmonic
mode=4; f x- =56 MHz; 70 kV
peak voltage; 5o kW RF power
(2 RF amplifiers)
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v Applied Research
« Medical application

lon Source Multi-cusp volume H source; I
=8mA,; V=40 kV; axial
injection

Dimensions ®=4.5 m, h=2 m, W=190 tons




SPES-B: The ISOL facility and the acceleration of neutron-ric-E

ISOL: [sofope Separation On Line
from Cycloiron through Target to Experiment
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SPES-B: The ISOL facility and the acceleration of neutron-ric
SPES Zoom IN: Inside SPES Targel (>10 Years of R&D)




SPES-B: The ISOL facility and the acceleration of neutron-rich
SPES Zoom OUT: the whole LNL acceleration complex |
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Re-Accelerated (40 MeV and
more):

« Charge Breeding

« ALPI (upgraded)

« Several High Energy LNL Exp.
Hall

v High Energy Physics
Experiments
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Regular (40 KeV):
 New Exp. Hall

v Low Energy I
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SPES=y: The production of radlonuclldes for applicat
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SPES-6: The multidisciplinary neutron sources

Neuirons: Several ideas in fhe future

.

NEPIR: (NEutron and Proton |
facility) project

QMN: Quasi Mono-energeti
source with a controllabl
in the 20-70Mev ener

ANEM: Atmospheric Neutron Emulat
get a fast neutrons (E>1 MeV) with a
continuous energy distribution similar to
that of neutrons found at flight-altitudes

and sea-level for SEE testing '

SLOWNE: a high intensity slow neutron (E
< MeYV) flux for applications
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Light
From Wikipedia, the free encyclopedia

"Visible light" redirects here. For light that cannot be seen with human eye, see Electromagnetic radiation. For other uses, see Light (disambiguation) and Visible light (disambiguation).
"Lightsource" redirects here. For the solar energy developer named Lightsource, see Lightsource Renewable Energy.

Light is electromagnetic radiation within a certain portion of the electromagnetic spectrum. The word usually refers to visible light, which is the visible spectrum that is visible to the human eye and is responsible for the
sense of sight [! Visible light is usually defined as having wavelengths in the range of 400-700 nanometres (nm), ar 4.00 x 1077 to 7.00 x 1077 m, between the infrared (with longer wavelengths) and the ultraviolet (with
shorter wavelengtns). 213 This wavelength means a frequency range of roughly 430750 terahertz (THz).

The main source of light on Earth is the Sun. Sunlight provides the energy that green plants use to create sugars mostly in the form of starches, which release energy into the living things that digest them. This process of
photosynthesis provides virtually all the energy used by living things. Historically, another important source of light for humans has been fire, from ancient campfires to modern kerosene lamps. With the development of
electric lights and power systems, electric lighting has effectively replaced firelight. Some species of animals generate their own light, a process called bioluminescence. For example, fireflies use light to locate mates, and
vampire squids use it to hide themselves from prey.

The primary properties of visible light are intensity, propagation direction, frequency or wavelength spectrum, and polarization, while its speed in a vacuum, 299,792,458 metres per second, is one of the fundamental
constants of nature. Visible light, as with all types of electromagnetic radiation (EMR), is experimentally found to always move at this speed in a vacuum [4]

A triangular prism dispersing a beam of &
white light. The longer wavelenagths (red) and
the shorter wavelengths (blue) are separated.

In physics, the term light sometimes refers to electromagnetic radiation of any wavelength, whether visible or not.BII] In this sense, gamma rays, X-rays, microwaves and radio waves are also light. Like all types of EM
radiation, visible light propagates as waves. However, the energy imparted by the waves Is absorbed at single locations the way particles are absorbed. The absorbed energy of the EM waves is called a photon, and
represents the quanta of light. When a wave of light is transformed and absorbed as a photon, the energy of the wave instantly collapses to a single location, and this location is where the photon "arrives.” This is what is
called the wave function collapse. This dual wave-like and particle-like nature of light is known as the wave-particle duality. The study of light, known as optics, is an important research area in modemn physics. .
Modern physics
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Light (Laser)
* Energy
« Wavelength
» Propagation

« Wave.... Particle....
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Light Properties: Color
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Light emission..... Absorption firts

* Light absorpftion




Emission..... Spontaneous
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« LED => Electrical power
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Emission

* Active medium




Active medium => Pumping
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Laser (1960)

+ light amplification by stimulated emission of radiation

o




Selecting color...

SUBSTRATE A

i

\ B
asIN|
asiND GRATING

NORMAL




Colore

« Who drive the laser colore => Active medium & Losses
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Flame test

 (Each element has its own favorite colom

Sr

* Emission/Absorbtion

"03 w@



lonization Potential
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I'.l' Principles of resonant laser ionization

non-resonant excitation of lonization of
ionization auto-ionizing states Rydberg-states
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SPES-B: The ISOL facility and the acceleration of neutron-ric-E

ISOL: [sofope Separation On Line
from Cycloiron through Target to Experiment
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SPES-B: The ISOL facility and the acceleration of neutron-ric
SPES Zoom IN: Inside SPES Targel (>10 Years of R&D)
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Lasers:
3 Dye lasers pumped by 2 Nd:YAG 10Hz rep rate lasers; Nd:YAG for
ablation

Measurement systems:
Hollow Cathode Lamps and Time of Flight Mass Spectrometer




Hollow cathode lamps

Designed to provide spectral emission of different
clements.

e Commercial for Opto Galvanic application

* Inexpensive

* Available for almost the whole periodic table

* Electrical noise is very small, comparable with
the level of shot noise

* Easy setup

The OG effect arises from the interaction of
resonant radiation with atoms present in a
discharge.

Lawler, 1980, observed that the OG effect can
be considered proportional to the number of
photons absorbed [1]

[11Beniamino Barbieri, Nicold Beverini, Antonio Sasso: “Optogalvanic spectroscopy”, Reviews of Modern Physics, Vol. 62, No.3, July 1990



Optogalvanic Signals

SLOW Opto-Galvanic Signal:

The absorption of laser radiation in the discharge
results in a change in the steady-state population of
bound atomic or molecular levels. Since different
levels will have different ionization cross-sections, a
perturbation to the steady-state situation results in a SLOW Signal
net change in the discharge current or equivalently a
change in the discharge impedance. The electric

signal detected is the slow signal, negative and A ——
lasting LLS. C 10,00 % '

FAST Opto-Galvanic Signal:

It 1s a direct ionization process during laser pulse.
The laser radiation brings the selectively excited
atoms directly to ionization. Electrons are
immediately available as carriers.

This effect produces a fast electric signal. It was
found (Broglia et al 1983 [3]) that this fast signal
follows the laser pulse temporal behavior (ns).

W42.40 %

[3] M.Broglia, F.Catoni, P.Zampetti: “Temporal behaviour of the optogalvanic signal in a hollow cathode lamp”, Journal de Physique, Colloque C7, supplement au n° 11, Tome 44, novembre 1983



Laser resonant ionization
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Time of flight mass spectrometer

Measure Sequence:

1) Ablation

2) Plume Expansion
3) Photoionization
4) Flight

5) Collection




Time of flight mass spectrometer

Typical Signal:

Time of flight signal for

Tin @ oscilloscope
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Time of flight mass spectrometer

Simion® simulatior— VS ToF acquisition— & ToF mass resol
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SIMION Sn isotopes

Mass Resolution:

m
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abundance
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2 114sn 113,90 0.66 (1)
3 1155n 114,90 0.34 (1)
4 1165n 115,90 14.54 (9)
51175n 116,90 7.68(7)
6 1185n 117,90 24.22 (9)
7 1195n 118,90 8.59 (4) m
8 1205n 119,90 32.58 (9)
9 1225n 121,90 4.63 (3) m 1125 — 268 — (1205n) = 256
\_ 10124sn 123,915.79(5) J ( n) - Am
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