

Available online at www.sciencedirect.com

SCIENCE DIRECT.

Physics Reports 397 (2004) 63-154

PHYSICS REPORTS

www.elsevier.com/locate/physrep

Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles

J.S.M. Ginges, V.V. Flambaum*

School of Physics, University of New South Wales, Sydney 2052, Australia

Accepted 9 March 2004 editor J. Eichler

Antonio Dainelli 11 Febbraio 2020

The success of the standard electroweak model of elementary particles is extraordinary.

It has been tested in physical processes covering a range in momentum transfer exceeding ten orders of magnitude. It correctly predicted the existence of new particles such as the neutral Z boson.

However, the standard model fails to provide a deep explanation for the physics that it describes. For example,

why are there three generations of fermions? What determines their masses and the masses of gauge bosons? What is the origin of CP violation?

The Higgs boson (which gives masses to the particles in the standard model) has not yet been found. (nel 2004 !!!!)

The standard model is unable to explain Big Bang baryogenesis which is believed to arise as a consequence of CP violation.

It is widely believed that the standard model is a low-energy manifestation of a more complete theory (perhaps one that unifies the four forces). Many well-motivated extensions to the standard model have been proposed, such as supersymmetric, technicolour, and leftright symmetric models, and these give predictions for physical phenomena that differ from those of the standard model. Some searches for new physics beyond the standard model are performed at high-energy and medium-energy particle colliders where new processes or particles would be seen directly.

However, a very sensitive probe can be carried out at low energies through precision studies of quantities that can be described by the standard model. The new physics is manifested indirectly through a deviation of the measured values from the standard model predictions.

These tests exploit the fact that low-energy phenomena are especially sensitive to new physics that is manifested in the violations of fundamental symmetries, in particular P (parity) and T (time-reversal), that occur in the weak interaction. The deviations from the standard model, or the effects themselves, may be very small.

To this end, exquisitely precise measurements and calculations are required.

More than 20 years ago atomic experiments played an important role in the verification of the standard model. While the first evidence for neutral weak currents (existence of the neutral Z boson) was discovered in neutrino scattering, the fact that neutral currents violate parity was first established

in atomic experiments and only later observed in high-energy electron scattering [5].

Atomic physics plays a major role in the search for possible physics beyond the standard model.

Precision atomic and high-energy experiments have different sensitivities to models of new physics and so they provide complementary tests. In fact the energies probed in atomic measurements exceed

those currently accessible at high-energy facilities. For example, the most precise measurement of parity non conservation (PNC) in the cesium atom sets a lower bound on an extra Z boson popular in many extensions of the standard model that is tighter than the bound set directly at the Tevatron

Also, the null measurements of electric dipole moments (EDMs) in atoms (an EDM is a P- and T-violating quantity) place severe restrictions on new sources of CP-violation which arise naturally in models beyond the standard model such as supersymmetry. (Assuming CPT invariance, CP-violation is accompanied by T-violation.) Such limits on new physics have not been set by the detection of CP-violation in the neutral K [6] and B [7] mesons (see, e.g., Ref. [8] for a review of CP violation in these systems).

Let us note that while new physics would bring a relatively small correction to a very small signal in atomic parity violation, in atomic EDMs the standard model value is suppressed and is many orders of magnitude below the value expected from new theories.

Therefore, detection of an EDM would be unambiguous evidence of new physics.

it is now (2004) firmly established that the **cesium** measurement <u>is in excellent agreement</u> with the standard model;

007		Yaratasia		and the second second	α (95%)	²⁰³ At	0.00		
²⁰⁷ Fr	87	120	206.99695(5)	14.8(1) s	β ⁺ (5%)	²⁰⁷ Rn	9/2-		
208-	07		007.0074.4/5)	50.4(0)	α (90%)	²⁰⁴ At	7.	2	
200Fr	87	121	207.99714(5)	59.1(3) s	β ⁺ (10%)	²⁰⁸ Rn	/+		
202		100	000.005054400	50.000	α (89%)	²⁰⁵ At	010		
203Fr	87	122	208.995954(16)	50.0(3) s	β ⁺ (11%)	²⁰⁹ Rn	9/2-		
210-	07	400		0.40(0)	α (60%)	206 _{At}	0.		
210Fr	87	123	209.996408(24)	3.18(6) min	β ⁺ (40%)	210 _{Rn}	- 6+		
²¹¹ Fr			210.995537(23)	0.4040	α (80%)	207 _{At}	0.0	-	
	87	124		3.10(2) min	β ⁺ (20%)	²¹¹ Rn	9/2-		
²¹² Fr	07	105	244.0000000000	00.0(0)	β ⁺ (57%)	²¹² Rn			
	87	125	211.996202(28)	20.0(6) min	α (43%)	²⁰⁸ At	- 5+		
²¹³ Fr	07	400	040 000400/00	04.0(0)	α (99.45%)	²⁰⁹ At	010		
	87	126	212.996189(8)	34.6(3) S	β ⁺ (.55%)	²¹³ Rn	9/2-		
²¹⁴ Fr	87	87 127 213.998971(9)		5.0(2) ms	α	²¹⁰ At	(1-)		
214m1Fr		123(6) keV	3.35(5) ms	α	²¹⁰ At	(8-)		
214m2 _{Fr}		638(6) keV	103(4) ns			(11+)		
214m3 _{Fr}		6477	/+Y keV	108(7) ns			(33+)		
215 _{Fr}	87	128	215.000341(8)	86(5) ns	α	²¹¹ At	9/2-		
²¹⁶ Fr	07	100	040 000400445	0.70(0)	α	212 _{At}	(4.5		
	87	129	216.003198(15)	0.70(2) µs	β ⁺ (2×10 ⁻⁷ %)	β ⁺ (2×10 ⁻⁷ %) ²¹⁶ Rn			
217 _{Fr}	87	130	217.004632(7)	16.8(19) µs	α	213At	9/2-		
218 _{Fr}	87	131	218.007578(5)	1.0(6) ms	α	214At	1-		
210m1-		00/4	Maril	22.0/5)	α	²¹⁴ At			
- iomitt		80(4) кеч	22.0(5) ms	IT (rare)	²¹⁸ Fr			

Simmetrie Fondamentali nel Francio

^

96															Ст232 лм	Сm233 -1 м						
95	15															Am231 -10 s	Am232					
94	Pu228 Pu229 -02 s 22 US															Pu229 >2 US	Pu230 -200 s	Ри231 в6 м				
93	3 3 3 3 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3															Np229 40 м	Np230 46 м					
92	U218 U219 U220 U221 U222 U223 U224 U225 U226 U227 1.5 Ms 42 VS -60 Ms -0.7 VS 1.0 VS 55 VS 0.9 MS 60 MS 0.35 S 1.1 M															U227	U228 _{91 M}	U229 яж				
91	91						Pa213 53 MS	Pa214 17 MS	Pa215	Pa216 105 MS	Pa217 2.3 MS	Pa218 011 MS	Ра219 53 хб	Pa220 0.78 US	Pa221 49 US	Ра222 зэмя	Pa223 5MS	Pa224 0858	Pa225	Ра226 18м	Ра227 383 м	Pa228
90	0 38MS 9MS			Th210 9 MS	Th211 37 xcs	Th212 SOMS	Th213 140 MS	Th214 100 MS	Th215	Th216 onzes	Th217 0252 x/s	Th218 איפטו	Th219 1.05 US	Th220 9.7 US	Th221 1 £83 xcs	Th222 28 MS	Th223 ogos	Th224 1058	Th225 в.72 м	Th226 10.57 м	Th227 18.72 D	
89		Ac206	Ac207 27 MS	Ас208 95 мз	Ac209	Ac210 0.358	Ac211 0258	Ac212 0558	Ac213 DED S	Ac214	Ac215	Ас216 -0.35 мз	Ac217 forms	Ac218	Ac219	Ac220 264 MS	Ас221 22 мз	Ac222 508	Ac223	Ас224 2.78 н	Ac225	Ас226 29.37 н
88	Ra204 59 MS	Ra205 021 s	Ra206 024 S	Ra207	Ra208	Ra209 4£8	Ra210 37 8	Ra211	Ra212	Ra213 2.74 M	Ra214 2.46 S	Ra215	Ra216 182 NS	Ra217	Ra218 255 US	Ra219 10 MS	Ra220 18 MS	Ra221 28 s	Ra222 380 s	Ra223	Ra224	Ra225
87	Fr203	Fr204	Fr205 3858	Fr206	Fr207 1488	Fr208 59.1 s	Fr209 2003	Fr210	Fr211	Fr212 200 M	Fr213 3468	Fr214	Fr215 bens	Fr216 0.70 US	Fr217 22 US	Fr218	Fr219 20 MS	Fr220 27.4 S	Fr221 49m	Fr222 142 M	Fr223 22 шм	Fr224
86	Rn202	Rn203 42 S	Rn204	Rn205	Rn206 5 <i>6</i> 7 M	Rn207 925 M	Rn208 24.35 M	Rn209 28.5 M	Rn210 24H	Rn211	Rn212 239 м	Rn213 250 MS	Rn214 027 US	Rn215 2.30 US	Rn216 45 US	Rn217 0.54 MS	Rn218 35 MS	Rn219 396 8	Rn220 55.6 s	Rn221 25.7 M	Rn222	Rn223
85	At201	At202	At203 74 M	At204 92 M	At205	At206 306 м	At207	At208	At209 5.41 H	At210	At211 7214 H	At212	At213 125 NS	At214 558 xs	At215	At216 0.30 MS	At217 32.3 MS	At218	At219 ≰s	At220 эл м	At221 2.3 M	At222 54 5
84	Ро200 109 м	Po201	Ро202 44.7 м	Ро203 ¥57 м	Ро204 3.55 н	Po205	Po206	Ро207 580 н	Po208 2.858 y	Po209	Po210	Po211 0.516 s	Po212 1299 US	Po213	Po214 164.3 US	Po215 1.781 MS	Po216 01458	Po217 1 47 8	Ро218 3.10 м	Ро219 -2 м		
83	Ві199 27 м	Bi200 ≌4 м	Bi201	Bi202	Bi203	Bi204 11 22 H	Bi205	Bi206 6243 D	Bi207 31.55 Y	Bi208	Bi209 100	Bi210	Bi211 2.14 M	Bi212	Bi213 45.50 M	Bi214	Bi215 7бж	Bi216 217 M	Bi217 57 s			
82	Pb198	Pb199 sux	Pb200 21.5 H	Рb201 9.35 н	Pb202 5250 Y	Рb203 я.в73н	Pb204	Pb205	Pb206 24.1	Pb207 22.1	Pb208 ≇₄	Pb209	Pb210 22.3 Y	Рb211 зы м	Pb212	Рb213 102 м	Рb214 268 м					
81	T1197 284 H	T1198 53H	T1199 7.42 H	Т1200 261 н	T1201 72.912 H	T1202	T1203 29.524	T1204 3.78 Y	T1205 70.476	Т1206 4200 м	Т1207 4.77 м	T1208 эдбэж	T1209 2.161 ж	T1210			00 - A					
80	Hg196	Hg197 6414 H	Hg198 997	Hg199	Hg200 23.10	Hg201	Hg202	Hg203	Hg204 687	Нg205 52 м	Hg206	Hg207	Нg208 41 м		-							

Figure 1.5. Meccanismo di funzionamento di una trappola magneto-ottica monodimensionale su una transizione $J = 0 \rightarrow J = 1$. L'illustrazione non è in scala; lo spostamento Zeeman è molto minore dell'energia della transizione ottica. [6]

