Light-based Radiation Detection, Detection of Light

Alfredo D. Ferella

PID – LNGS 2019/10/22

Outline

- Scintillators: various types
- Photomultipliers

Signal generation following energy deposition

Manual readout of scintillation

A *scintillator* is one of the oldest particle detectors for nuclear radiation. In the early times charged particles had been detected by light flashes emitted when the particles impinged on a zinc-sulphate screen. This light was registered with the naked eye. It has been reported that the sensitivity of the human eye can be significantly increased by a cup of strong coffee possibly with a small dose of strychnine.

A less damaging method

Scintillators

Scintillator Characteristics

- Scintillation efficiency: conversion of kinetic energy into photons
- Linearity of response
- Transparency to scintillation photons
- Luminescence decay time
- Coupling to photodetector
- Cost, size, other physical characteristics

Table 8.1 Properties of Some Commercially Available Organic Scintillators

		Light	Wavelength	Decay		İ	
		Output	of Max	Constant	Attenuation	Refractive	
Eljen	Bicron	%Anthracene*	Emission (nm)	(ns)	Length (cm)	Index	
Crystal							
Anthracene		100	447	30		1.62	
Stilbene		50	410	4.5		1.626	
Plastic							
EJ-212	BC-400	65	423	2.4	250	1.581	
EJ-204	BC-404	68	408	1.8	160	1.58	
EJ-200	BC-408	64	425	2.1	380	1.58	
EJ-208	BC-412	60	434	3.3	400	1.58	
	BC-420	64	391	1.5	110	1.58	
EJ-232	BC-422	55	370	1.4	8	1.58	
	BC-422Q	11	370	0.7	< 8	1.58	
	BC-428	36	480	12.5	150	1.58	
	BC-430	45	580	16.8	NA	1.58	
EJ-248	BC-434	60	425	2.2	350	1.59	
	BC-436	52	425	2.2	NA	1 61	

Scintillator Categories

Crystal

Plastic

Liquid

Gas

Noble Elements

He, Ne, Ar, Xe

Organics

Anthracene Stilbene Other pisystems Inorganic

Nal, Csl, BGO...

Fluorescence basics

Organic Scintillators

- Anthracene: the prototype
- C₁₄H₁₀
- Polycyclic aromatic hydrocarbon

Luminescence from π -bonded molecules

Light output

- Characterized by L_o: photons emitted per MeV deposited energy, typically ~10⁴ MeV⁻¹ for common materials
- Organic scintillators have nonlinear response at high energy density dE/dx due to selfquenching and radiation damage
- Non-linearity characterized by k_{B} , Birks' formula, k_{B} ~10³ g/cm²MeV

$$L = L_0 \frac{1}{1 + k_{\rm B} \cdot \mathrm{d}E/\mathrm{d}x}$$

Organic crystal scintillators

Anthracene crystals

Liquid and plastic organic scintillators

Scale Scale

Typical plastic scintillator setup

Total internal reflection Critical angle $sin^{-1}(n)$

Fig. 5.27. Light readout with a 'fish-tail' light guide.

Light guides

Adiabatic

Fishtail

Inorganic Scintillators

- Single crystal or polycrystaline
- Slower decay times than organics, but brighter
- Some exotic (\$\$\$) crystals are both bright and fast

Fig. 5.23. Energy bands in a pure (left) and doped (right) crystal.

Excitons and doping

Table 5.2. Characteristic parameters of some inorganic scintillators [93–98]

Scintillator	Density ϱ [g/cm ³]	X_0 [cm]	$ au_{ m D} \ [m ns]$	$L_{\rm ph}, N_{\rm ph}$ [per MeV]	$\lambda_{\mathrm{em}} \ [\mathrm{nm}]$	$n(\lambda_{ m em})$
$\overline{\mathrm{NaI}(\mathrm{Tl})}$	3.67	2.59	230	$3.8 \cdot 10^{4}$	415	1.85
LiI(Eu)	4.08	2.2	1400	$1 \cdot 10^4$	470	1.96
$\overline{\mathrm{CsI}}$	4.51	1.85	30	$2 \cdot 10^3$	315	1.95
CsI(Tl)	4.51	1.85	1000	$5.5 \cdot 10^4$	550	1.79
CsI(Na)	4.51	1.85	630	$4 \cdot 10^{4}$	420	1.84
$Bi_4Ge_3O_{12}$ (BGO)	7.13	1.12	300	$8 \cdot 10^3$	480	2.15
$\widehat{\mathrm{BaF}_2}$	4.88	2.1	$\begin{array}{c} 0.7 \\ 630 \end{array}$	$2.5 \cdot 10^3$ $6.5 \cdot 10^3$	$\frac{220}{310}$	$1.54 \\ 1.50$
$\mathrm{CdWO_4}$	7.9	1.06	$5000 \\ 20000$	$1.2\cdot 10^4$	$\frac{540}{490}$	2.35
$PbWO_4$ (PWO)	8.28	0.85	10/30	70–200	430	2.20
$Lu_2SiO_5(Ce)$ (LSO)	7.41	1.2	12/40	$2.6 \cdot 10^4$	420	1.82

Crystals are small: direct mounting

Positron Emission Tomography

segmented scintillation counters

1 esting state (eyes open)

2 Language

3 Music

4 Language and music

5 Tonal se uence untrained listener

6 Tonal se uence trained listener

7 Tonal uality (chords)

What *is* a photomultiplier tube, and *how* does it work?

The photoelectric effect

Cathode materials

- Metal is reflective!
- Alkali semiconductors have small W
 ~2 eV
- Cs-I, Cs-Te UV or "solar blind"
- Sb-Cs or "bialkali" Sb-Rb-Cs/Sb-K-Cs
- Bialkali used most with NaI(TI) in scintillation counters
- InGaAs and other semiconductor crystals used for IR

Response curves for photocathodes

Quantum efficiency

$$\eta(v) = (1-R) \frac{Pv}{k} \cdot (\frac{1}{1+1/kL}) \cdot Ps$$

where

R: reflection coefficient

k: full absorption coefficient of photons

Pv: probability that light absorption may excite electrons to a level greater than the vacuum level

L : mean escape length of excited electrons

Ps: probability that electrons reaching the photocathode surface may be released into the vacuum

v: frequency of light

The vacuum photodiode

Electron multiplication - gain

Dynode

Finally, the photomultiplier!

Different geometries for different applications

Figure 2-3: Circular-cage type

Reflection type

Figure 2-4: Box-and-grid type

Transmission type

Dynode Type	Rise Time (ns)	Pulse Linearity at 2% (mA)	Magnetic Immunity (mT)	Uniform- ity	Collection Efficiency	Features
Circular-cage	0.9 to 3.0	4.1.40	0.1	Poor	Good	Compact, high speed
Box-and-grid	6 to 20	1 to 10		Good	Very good	High collection efficiency
Linear-focused 0.7 to		10 to 250	0.1	Poor	Good	High speed, high linearity
Venetian blind	6 to 18	10 to 40		Good	Poor	Suited for large diameter
Fine mesh	1.5 to 5.5	300 to 1000	500 to 1500*	Good	Poor	High magnetic immunity, high linearity
MCP	0.1 to 0.3	700	1500*	Good	Poor	high speed
Metal channel	0.65 to 1.5	30	5**	Good	Good	Compact, high speed
Electron bombardment type	Depends on internal semiconductor		_	Very good	Very good	High electron resolution

Building a scintillation counter

 What aspects of scintillators and photomultipliers are important to consider when designing / evaluating a detector system?

- Scintillator material
- Geometry
- Wavelength shifter?
- Light guide?

- Window material?
- Photocathode
- Electron optics
- Dynode material, geometry
- Electronics...

Cherenkov radiation detectors

Cherenkov Neutrino Detectors e.g. IceCube

