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Overview

• Today: discuss NLP, preparation of the error message 
snippets from WMArchive and plans for the models


• Next time: discuss the results of the training of the 
models


• Main assumptions: only one error message per workflow, 
site and error + if a step in WMArchive entry has 
redundant error codes choose the first one that appears


• Repo https://github.com/llayer/AIErrorLogAnalysis

https://github.com/llayer/AIErrorLogAnalysis


Analysis of actionshistory.json

• 25.000 workflows with ~115.000 
potential error messages


• ~50% of the sites only have -1 error 
codes 


• Exit codes description: https://
twiki.cern.ch/twiki/bin/view/CMSPublic/
JobExitCodes
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Found error messages in WMArchive

• Analysis done with 
spark


• Found ~ 82% error 
messages for the 
(task, site, error) 
keys in 
actionshistory.json


• Some error codes 
seem to not have 
messages reported
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Preprocessing of the error logs
• Tokenize: NLTK TreeBankTokenizer (recommended in literature): statistical model trained on 

news text


• Filter: tokens that are only punctuation, single characters, frequency in whole vocabulary < 5
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Wordcloud for the 100 most frequent words
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• ~ 57.000 Tokens after filter


• Harder filtering possible - remove stopwords, lower, 
stemming …



Word2Vec
• Vector space models: embed words in a continuous vector space where semantically similar words 

are mapped to nearby points -> capture relations and reduce dimensionality


• Word2vec: particularly computationally-efficient predictive model for learning word embeddings 
from raw text https://www.tensorflow.org/tutorials/representation/word2vec


• Skip-Gram Model: learning word embeddings by training a model to predict context given a word


• Continuous Bag of Words (CBOW) model: learning word embeddings by training a model to predict 
a word given its context

3 Layer NN with input, hidden and output layer
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https://www.tensorflow.org/tutorials/representation/word2vec


Skip-Gram algorithm

• Input layer: vocabulary (R x V) vector in which V=Vocabulary Size and R is the number of 
training samples 


• Each word in the vocabulary is represented by a one-hot encoded vector


• Hidden layer: (V x E) in which E = Embedding Dimensions 


• The output layer is a vector (R x V). Probability for each word in the vocabulary for the 
given word input -> softmax
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Skip-Gram example
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Word2vec for the error messages vocabulary

• Train with skip-Gram in 
100d


• Use t-SNE algorithm to 
visualize embeddings


• t-SNE: nonlinear 
dimensionality reduction 
-> similar objects are 
modeled by nearby 
points and dissimilar 
objects are modeled by 
distant points


• Fraction in Google 
news: < 5%
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Visualization of the error messages with t-SNE

• Representation of the error message -> average text vectors


• More advanced: weight with TF-IDF: term frequency–inverse document frequency: 
reflects how important a word is to a document in a corpus 


• Error codes form clusters
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Model sketch to include pretrained word vectors
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• Input numpy array: (workflows, 
exit_code, site, w2v + count) -> 
(25.000 x 50 x 100 x 100 x 1)


• Fully connected NN has too 
many parameters -> use 
shared layers and variations


• Setup the matrix speeding up 
Christian’s code using pandas 
and filling a 3D numpy array per 
task-> O(10s) to create input 


• In case of memory issues: 
create matrix in chunks and 
write to hdf files -> use Keras fit 
generator


• Prototype implemented and 
tested



More advanced: include text directly in model

• Problem with averaging word vectors -> no exploitation of the sequence of words


• Solution: include Embedding Layer directly: input_dim = number of words, 
output_dim = embedding dimension, input_length = maximum length of sentence


• Embedding Layer reduces dimensionality - avoids one hot encoding of words + 
can be initialized with pretrained models - transfer w2v model


•  LSTM: used for sequences -> feed the sentence 


• Review is positive or negative -> binary_crossentropy 

Example: sentiment analysis - predict if review for a movie is positive/negative
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Model sketch to include the tokenized logs directly
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• Include  Embedding + LSTM per 
(error, site) matrix cell


• Challenge: dimension is now: 
(25.000 x 50 x 100 x ~5.000)


• Words in error messages are 
encoded by integers and need to 
be masked with zeros -> very 
sparse, hard to write to disk


• Limit with Keras: fit one example 
in the GPU memory


• Summing over sites/errors also 
possible



Pipeline for the ML

Training + Evaluation 

• Build on Dominykas code -> includes k-fold validation, bayesian 
optimization and oversampling


• Need to be adapted to out of memory training -> load the data in chunks 
and use Keras fit_generator (prototyped)
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Possible solution to train a model as shown in the last slide 

• Store input per workflow as a sparse matrix with dictionary { (site_index, 
error_index) : [ tokenized text ], … }


• Fits easily in memory -> Loop over the workflows, create inflated matrix with 
masking zeros in chunks and train the model in batches


• Another possibility: Keras accepts sparse input -> try to bring the sparse input 
in a form that Keras can handle



Follow up: multiple errors per WMArchive entry

• Multiple steps, error reporting not optimal, initial error can cause more error further the chain - schema: 
https://github.com/dmwm/WMCore/blob/master/src/python/WMCore/Services/WMArchive/
DataMap.py#L378


• What is the actionshistory.json?


• What is the best way to deal with redundant exit codes? Concat, first one… ?

{ …, 
u'task': u’/vlimant_ACDC0_task_HIG-RunIIFall17wmLHEGS-01415__v1_T_180706_002124_986/HIG-
RunIIFall17DRPremix-02001_1/HIG-RunIIFall17DRPremix-02001_1MergeAODSIMoutput/HIG-
RunIIFall17MiniAODv2-01299_0', … ,  

u'meta_data': {u'jobstate': u’jobfailed'} 

u'steps': [ 

    {u'status': 99996, u'errors': [ 
        {u'type': u'ReportManipulatingError', u'details': u'Failed to find a step report for  
         stageOut1!’, 
         u'exitCode': 99996}], u'name': u'stageOut1', u'stop': None, u'site': u'T1_UK_RAL', }, 

    {u'status': 0, u'errors': [], u'name': u’logArch1’}, 

    {u'status': 85, u'errors': [ 

          {u'type': u'CMSSWStepFailure', u'details': u"\n Adding last 25 lines of CMSSW stdout: ',  
           u'exitCode': 85},  

          {u'type': u'Fatal Exception', u'details': u"An exception of category 'FileReadError'  
           occurred while\n   ', u'exitCode': 8021}, 
  
          {u'type': u'ErrorLoggingAddition', u'details': u'Adding extra error in order to hold error  
          report\n\nAdding last ten lines of CMSSW stderr:\nWARNING:',  u'exitCode': 99999},  

          {u'type': u'WMAgentStepExecutionError', u'details': u"<@========== WMException Start  
          ==========@>\nException Class: CmsRunFailure\nMessage: ", u'exitCode': 85}],   
     u'site': u'T1_UK_RAL', }], … 
} 
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https://github.com/dmwm/WMCore/blob/master/src/python/WMCore/Services/WMArchive/DataMap.py#L378
https://github.com/dmwm/WMCore/blob/master/src/python/WMCore/Services/WMArchive/DataMap.py#L378


Open questions / ideas

• Best way of combining with Hamed’s code


• Add good/bad sites information to training?


• Sum over Tiers, Sites, etc.


• Add info from other fields in WMArchive


• Make structured templates from log messages
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Summary + Plans

Current status 

• First pipeline to train and evaluate a model implemented


• Several ideas for serious models 


Plans for the next weeks 

• Verify the assumption that multiple error messages per (task, site, error) are redundant


• Better understand + improve the filtering of the vocabulary (define working points)


• Finish implementing the models and handle the training and evaluation for out-of-memory 
data (adapting Dominykas code)


• Run the proposed models under equal conditions to have a fair comparison


Long-term plans 

• Merge code with Hamed


• Switch to TF


• Include the full error logs to have more control
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