
Error log analysis with
NLP

Lukas Layer

Overview

• Today: discuss NLP, preparation of the error message
snippets from WMArchive and plans for the models

• Next time: discuss the results of the training of the
models

• Main assumptions: only one error message per workflow,
site and error + if a step in WMArchive entry has
redundant error codes choose the first one that appears

• Repo https://github.com/llayer/AIErrorLogAnalysis

https://github.com/llayer/AIErrorLogAnalysis

Analysis of actionshistory.json

• 25.000 workflows with ~115.000
potential error messages

• ~50% of the sites only have -1 error
codes

• Exit codes description: https://
twiki.cern.ch/twiki/bin/view/CMSPublic/
JobExitCodes

!3

Found error messages in WMArchive

• Analysis done with
spark

• Found ~ 82% error
messages for the
(task, site, error)
keys in
actionshistory.json

• Some error codes
seem to not have
messages reported

!4

Preprocessing of the error logs
• Tokenize: NLTK TreeBankTokenizer (recommended in literature): statistical model trained on

news text

• Filter: tokens that are only punctuation, single characters, frequency in whole vocabulary < 5

!5

Wordcloud for the 100 most frequent words

!6

• ~ 57.000 Tokens after filter

• Harder filtering possible - remove stopwords, lower,
stemming …

Word2Vec
• Vector space models: embed words in a continuous vector space where semantically similar words

are mapped to nearby points -> capture relations and reduce dimensionality

• Word2vec: particularly computationally-efficient predictive model for learning word embeddings
from raw text https://www.tensorflow.org/tutorials/representation/word2vec

• Skip-Gram Model: learning word embeddings by training a model to predict context given a word

• Continuous Bag of Words (CBOW) model: learning word embeddings by training a model to predict
a word given its context

3 Layer NN with input, hidden and output layer
!7

https://www.tensorflow.org/tutorials/representation/word2vec

Skip-Gram algorithm

• Input layer: vocabulary (R x V) vector in which V=Vocabulary Size and R is the number of
training samples

• Each word in the vocabulary is represented by a one-hot encoded vector

• Hidden layer: (V x E) in which E = Embedding Dimensions

• The output layer is a vector (R x V). Probability for each word in the vocabulary for the
given word input -> softmax

!8

Skip-Gram example

!9

Word2vec for the error messages vocabulary

• Train with skip-Gram in
100d

• Use t-SNE algorithm to
visualize embeddings

• t-SNE: nonlinear
dimensionality reduction
-> similar objects are
modeled by nearby
points and dissimilar
objects are modeled by
distant points

• Fraction in Google
news: < 5%

!10

Visualization of the error messages with t-SNE

• Representation of the error message -> average text vectors

• More advanced: weight with TF-IDF: term frequency–inverse document frequency:
reflects how important a word is to a document in a corpus

• Error codes form clusters
!11

Model sketch to include pretrained word vectors

!12

• Input numpy array: (workflows,
exit_code, site, w2v + count) ->
(25.000 x 50 x 100 x 100 x 1)

• Fully connected NN has too
many parameters -> use
shared layers and variations

• Setup the matrix speeding up
Christian’s code using pandas
and filling a 3D numpy array per
task-> O(10s) to create input

• In case of memory issues:
create matrix in chunks and
write to hdf files -> use Keras fit
generator

• Prototype implemented and
tested

More advanced: include text directly in model

• Problem with averaging word vectors -> no exploitation of the sequence of words

• Solution: include Embedding Layer directly: input_dim = number of words,
output_dim = embedding dimension, input_length = maximum length of sentence

• Embedding Layer reduces dimensionality - avoids one hot encoding of words +
can be initialized with pretrained models - transfer w2v model

• LSTM: used for sequences -> feed the sentence

• Review is positive or negative -> binary_crossentropy

Example: sentiment analysis - predict if review for a movie is positive/negative

!13

Model sketch to include the tokenized logs directly

!14

• Include Embedding + LSTM per
(error, site) matrix cell

• Challenge: dimension is now:
(25.000 x 50 x 100 x ~5.000)

• Words in error messages are
encoded by integers and need to
be masked with zeros -> very
sparse, hard to write to disk

• Limit with Keras: fit one example
in the GPU memory

• Summing over sites/errors also
possible

Pipeline for the ML

Training + Evaluation

• Build on Dominykas code -> includes k-fold validation, bayesian
optimization and oversampling

• Need to be adapted to out of memory training -> load the data in chunks
and use Keras fit_generator (prototyped)

!15

Possible solution to train a model as shown in the last slide

• Store input per workflow as a sparse matrix with dictionary { (site_index,
error_index) : [tokenized text], … }

• Fits easily in memory -> Loop over the workflows, create inflated matrix with
masking zeros in chunks and train the model in batches

• Another possibility: Keras accepts sparse input -> try to bring the sparse input
in a form that Keras can handle

Follow up: multiple errors per WMArchive entry

• Multiple steps, error reporting not optimal, initial error can cause more error further the chain - schema:
https://github.com/dmwm/WMCore/blob/master/src/python/WMCore/Services/WMArchive/
DataMap.py#L378

• What is the actionshistory.json?

• What is the best way to deal with redundant exit codes? Concat, first one… ?

{ …,
u'task': u’/vlimant_ACDC0_task_HIG-RunIIFall17wmLHEGS-01415__v1_T_180706_002124_986/HIG-
RunIIFall17DRPremix-02001_1/HIG-RunIIFall17DRPremix-02001_1MergeAODSIMoutput/HIG-
RunIIFall17MiniAODv2-01299_0', … ,

u'meta_data': {u'jobstate': u’jobfailed'}

u'steps': [

 {u'status': 99996, u'errors': [
 {u'type': u'ReportManipulatingError', u'details': u'Failed to find a step report for
 stageOut1!’,
 u'exitCode': 99996}], u'name': u'stageOut1', u'stop': None, u'site': u'T1_UK_RAL', },

 {u'status': 0, u'errors': [], u'name': u’logArch1’},

 {u'status': 85, u'errors': [

 {u'type': u'CMSSWStepFailure', u'details': u"\n Adding last 25 lines of CMSSW stdout: ',
 u'exitCode': 85},

 {u'type': u'Fatal Exception', u'details': u"An exception of category 'FileReadError'
 occurred while\n ', u'exitCode': 8021},

 {u'type': u'ErrorLoggingAddition', u'details': u'Adding extra error in order to hold error
 report\n\nAdding last ten lines of CMSSW stderr:\nWARNING:', u'exitCode': 99999},

 {u'type': u'WMAgentStepExecutionError', u'details': u"<@========== WMException Start
 ==========@>\nException Class: CmsRunFailure\nMessage: ", u'exitCode': 85}],
 u'site': u'T1_UK_RAL', }], …
}

!16

https://github.com/dmwm/WMCore/blob/master/src/python/WMCore/Services/WMArchive/DataMap.py#L378
https://github.com/dmwm/WMCore/blob/master/src/python/WMCore/Services/WMArchive/DataMap.py#L378

Open questions / ideas

• Best way of combining with Hamed’s code

• Add good/bad sites information to training?

• Sum over Tiers, Sites, etc.

• Add info from other fields in WMArchive

• Make structured templates from log messages

!17

Summary + Plans

Current status

• First pipeline to train and evaluate a model implemented

• Several ideas for serious models

Plans for the next weeks

• Verify the assumption that multiple error messages per (task, site, error) are redundant

• Better understand + improve the filtering of the vocabulary (define working points)

• Finish implementing the models and handle the training and evaluation for out-of-memory
data (adapting Dominykas code)

• Run the proposed models under equal conditions to have a fair comparison

Long-term plans

• Merge code with Hamed

• Switch to TF

• Include the full error logs to have more control

!18

