A new method to measure ultra-low isotope contamination in liquid argon

Pablo García Abia

On behalf of the **DarkSide** and **ArDM** Collaborations

emot Centro de Investigaciones

Energéticas, Medicambientales

The role of underground argon in direct dark matter search

- Today, Xe rules.
- Ar competitive for high target mass and low background.
- Future Ar-based experiments will use underground argon (UAr).
- Measuring the concentration of ³⁹Ar in UAr is crucial: **DArT**.

Spin-independent DM-nucleon cross section 90% C.L. exclusion limits / sensitivity curves

Argon has a naturally occurring β emitting isotope, ³⁹Ar

Activity 1 Bq/kg in AAr, 0.73 mBq/kg in DS-50 UAr

Global Argon DM Collaboration

Next generation direct DM search experiments will operate with **underground Ar** and **radio-pure materials** to maximise the discovery potential. Light sensitivity and coverage enhanced with Si photomultipliers (**SiPMs**).

Current experiments: DarkSide-50, DEAP-3600, ArDM, MiniClean Future experiments: DarkSide-20k (50 t), ARGO (300 t) Laboratories: LNGS, SNOLAB, LSC. Strong support from CERN.

59 institutions, 420 researchers,14 countries: Brazil, Canada, China, France, Greece, Russia, Italy, Mexico, Poland, Romania, Spain, Switzerland, UK, USA.

GADMC event at the Canadian Embassy

Madrid (Spain), May 2019

Similar events were previously held in Rome and Paris

DarkSide-20k in a nutshell

50 tonne LAr active volume: **underground argon**, 8200 PDMs (SiPM), ultra radio-pure materials.

No organic liquid scintillators at LNGS: new active veto (Acrylic + Gd).

New cryostat (proto-DUNE like): passive veto (AAr)

DS-Proto: 1 tonne prototype (CERN).

Low radioactivity UAr for DS-20k

Assuming ³⁹Ar depletion factor 1400 (DS-50):

10⁸ ER events expected in 100 tonne·y exposure.
PSD: 10⁹ discrimination power for NR/ER.

Lower depletion factor expected (air leak in DS-50 UAr).

DarkSide-20k physics goals at reach with just UAr.

URANIA plant will extract the UAr from the Kinder-Morgan facility in Cortez (Colorado, USA).

ARIA (Sardinia, Italy) will chemically purify the UAr to detector grade.

<u>Crucial to measure the depletion factor of 39Ar in UAr.</u>

Ar extraction and purification

DArT: measuring ³⁹Ar in UAr

DArT is a small low-background detector designed to measure the ³⁹Ar depletion factor of different underground argon batches (URANIA+ARIA):

99.99% OFHC Cu cylinder, 1 & active volume,
PMMA support structure with TPB coating,
Readout two PDMs (1 cm² SiPMs) from DS-20k
(DArTeye).

Background (γ): internal (from detector materials), and external (from surrounding rock).

It will be located at **LSC** inside ArDM, LAr TPC (850 kg AAr) to be used as active veto.

Copper vessel (Cagliari+CIEMAT)

Vacuum and cryogenic tests (CIEMAT)

DEAP-3600 acrylic (Carleton U.)

DArTeye: the DArT readout (LNGS)

FRONT

BACK

power supply

signal output

SiPM: cell size 25 μ m R_q = 10 MΩ doping x3

design: LNGS components: Cagliari assembly: LNGS wire bonding: PU

devices:

- 1. not radiopure
- 2. radiopure

DArTeye in DArT

Light collection efficiency

Collection efficiency 48%, 10 PE/keV with PDE 0.4.

High collection uniformity.

DArT in ArDM

Insertion of DArT in ArDM. Use ArDM target as veto.

ArDM in Hall A (LSC)

Event rates

Expected number of ³⁹Ar events in 1 week:

~4x10⁸ in ArDM (610 Hz from AAr, 1 Bq/kg), ~620 in DArT (1 ℓ) - UAr, 0.73 mBq/kg (from DS-50), ~85 in DArT (1 ℓ) - UAr, 0.10 mBq/kg (depletion factor 10⁴).

Rate expected in DArT: 0.4 Hz from internal background events (w/o veto) plus 1 Hz from ³⁹Ar events (AAr, w/o threshold).

Rate in ArDM: 1.5 kHz from ³⁹Ar and background events.

Readout: CAEN digitisers, MIDAS software. System originally developed for DEP-3600 (by the TRIUMF group), then used for DarkSide-Proto. Final setup under development.

Analysis of events in DArT

Background events: γ from the detector materials and the surrounding rock deposit energy in either ArDM, or DArT, or both.

The energy deposited in **ArDM** is used to tag (veto) background events:

$E_{ardm} > 10 \text{ keV}$

The region of interest (**ROI**) for signal events is defined using the energy deposited in **DArT**:

E_{dart} < 600 **keV**

Events in the ROI with E_{ardm}<10 keV (i.e. **untagged** in ArDM) are the actual background events.

Full ArDM and DArT simulation, geometries and materials (Geant4).

Background from the cryostat

Untagged: $E_{ardm} < 10 \text{ keV}$ (veto) ROI: $0 < E_{dart} < 600 \text{ keV}$

Events from ⁴⁰K: 900k in ArDM, 324 in DArT ROI, 11 untagged.

Etample

Background events per week

Internal background from radioimpurities in the materials.

Flux (γ /cm² s) of the dominant external backgrounds [1]:

²³⁸U 0.72, ²³²Th 0.13, ⁴⁰K 0.05

[1] ArDM Collaboration, *Backgrounds and pulse shape discrimination in the ArDM liquid argon TPC,* arXiv:1712.01932 (2017).

Signal events: 620

```
Signal-to-background ratio:
```

Naked = 0.06

Internal background in ROI

Material	events/week	Untagged events/week
DArT Cu	17	6
Arlon SiPM	40	23
Acrylic	9	4
ArDM cryostat	3164	218
ArDM PMTs	1053	43

External background in ROI					
Configuration	events/week	untagged events/week			
Naked	118 k	10020			
Total naked	122 k	10300			

Huge external background

Pb shield against γ background

Background events per week

Internal background from radioimpurities in the materials.

Flux (γ /cm² s) of the dominant external backgrounds [1]:

²³⁸U 0.72, ²³²Th 0.13, ⁴⁰K 0.05

[1] ArDM Collaboration, *Backgrounds and pulse shape discrimination in the ArDM liquid argon TPC,* arXiv:1712.01932 (2017).

Signal events: 620

Signal-to-background ratio:

Naked = 0.06Shielded = 1.33 Internal background in ROI

Material	events/week	Untagged events/week
DArT Cu	17	6
Arlon SiPM	40	23
Acrylic	9	4
ArDM cryostat	3164	218
ArDM PMTs	1053	43
Pb shell	150	16

External background in ROI

Configuration	events/week	untagged events/week
Naked	118 k	10020
Total naked	122 k	10300
Shielded	2.6 k	156
Total shielded	7.2 k	466

Expected spectra in DArT

Sensitivity from a fit:	Depletion factor with respect to AAr	statistical uncertainty without lead [%]	statistical uncertainty with lead [%]
$d = n_S S + n_B B$	10 100	0.5 2.5	0.4
	DS-50 1400 14000	20.3	6.7 41.1

EDArT detector

Update of DArT detector (**Enhanced DArT**), in order to increase the sensitivity to depleted Ar (<0.1 mBq/kg).

Dual-phase detector with an active volume of 10 ℓ UAr: ~6000 events per week.

The ³⁹Ar signal would produce a single ionisation track in the detector. With a DP detector, multi-scattering events can be removed.

Expected performance for depleted Ar: S/B from 1.3 to 5, statistical uncertainty from 20% to 4%.

Details (mechanics, readout, etc.) must be carefully studied.

Outlook

Underground argon will be key to the physics programmes of DarkSide-20k and ARGO.

DArT will measure the concentration ³⁹Ar in UAr for depletion factors exceeding the current measurements (×1400 for DS-50).

Very high depletion factors may require a DP detector: EDArT.

DArT will be installed in LSC and commissioned in Q4 2019.

In the long term, DArT will stay at LSC as a facility of the laboratory.