

FOR ASTROPHYSICS MULTIMESSENGER DATA ANALYSIS IN THE ERA OF CTA SEXTEN – JULY 28, 2019

Gravitational wave detectors

working principle, optical layout, and updates

Francesco Di Renzo University of Pisa & INFN section of Pisa

Istituto Nazionale di Fisica Nucleare UNIVERSITÀ DI PISA

Plan of the presentation

- 1. Working principle of interferometric gravitational wave detectors:
 - "Spacetime tells matter how to move, matter tells spacetime how to curve";
 - The "rubber ruler" puzzle;
 - Cosmological redshift of light.
- 2. From a simple Michelson interferometer to modern GW detectors:
 - (Simplified) optical layout and readout;
 - (Main) noise sources;
 - Sensitivity: design vs. actual.
- 3. Updates from the Advanced Virgo and Advanced LIGO O3 science run.

The Einstein Equations

or "spacetime tells matter how to move, matter tells spacetime how to curve"." John A. Wheeler.

In general relativity gravity is described by the

Linearized theory: $g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu}$. GR admits propagating, wave-like solutions [Einstein 1916]. In *Lorentz gauge*:

D'Alambertian
(wave operator)
$$\Box h_{\mu\nu} = -\frac{16\pi G}{c^4}T_{\mu\nu} + \mathcal{O}(h^2)$$

Gravitational Waves (GW): *ripples* in spacetime [Kip Thorne], caused by accelerating masses with non-constant quadrupole moment, which propagates in spacetime at speed *c*.

Production and free propagation of GWs

Production: accelerating mass densities:

$$h_{\mu\nu} \approx \frac{2}{r} \frac{G}{c^4} \ddot{I}_{\mu\nu}$$
 Second derivative of quadrupole moment

*R*_____

E.g.: for an orbiting binary system $I \approx MR^2$, $\ddot{I} \approx 4MR^2\omega_{\rm orb.}^2$

$$h \approx \frac{8G}{c^4} \frac{M}{r} R^2 \omega_{\text{orb.}}^2 \approx \frac{8G}{c^2} \frac{M}{r} \left(\frac{v}{c}\right)^2 \sim \mathbf{10^{-21}}$$

Free propagation along "*z*-axis" in vacuum ($T_{\mu\nu} = 0$):

$$\Box h_{\mu\nu} = 0 \implies h_{\mu\nu}(t,z) = h_{\mu\nu}e^{i(kz-\omega t)} \quad \text{with} \quad \omega/c = k$$

Interaction of GWs with test masses

and the "rubber ruler" puzzle. Peter R. Saulson.

Customary picture in the **detector reference frame**:

a circular array of test masses responds to an incoming GW (perpendicular to the screen):

The rubber ruler paradox: the arms of an interferometer are lengthened by a gravitational wave. The wavelength of the light in an interferometer is also lengthened by a gravitational wave, by *the same factor*.

So, how can we use light as a ruler to detect gravitational waves?

Are we using a "rubber ruler" that participates in the same distortions as the system whose distortions we are trying to measure?

Peter R. Saulson

GW interaction in the TT frame

or how to exploit gauge freedom in our favor.

Customary picture to represent GW propagating degrees of freedom:

$$h_{ij}^{\text{TT}}(t,z) = \begin{pmatrix} h_{+} & h_{\times} & 0\\ h_{\times} & -h_{+} & 0\\ 0 & 0 & 0 \end{pmatrix} \cos[\omega(t-z/c)]$$

In this gauge, GWs are transverse and traceless (TT): h_+ and $h_ imes$ d.o.f.

In this frame, objects initially at rest **remain at rest**, even after the arrival of the wave. That is, they are "free falling":

Geodesic
$$\longrightarrow \left. \frac{d^2 x^i}{d\tau^2} \right|_{\tau=0} = -\left[\Gamma^i_{\nu\rho}(x) \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} \right]_{\tau=0} = \left[\Gamma^i_{00} \left(\frac{dx^0}{d\tau} \right)^2 \right]_{\tau=0} = 0$$

Because, in this gauge, the Christoffel symbol $\Gamma_{00}^i = \frac{1}{2}(2\partial_0 h_{0i} - \partial_i h_{00}) = 0$. [Maggiore 2008] Only a non-gravitational force can cause a mass to move, *i.e.* to change its coordinates.

Light travel time through the detector (TT gauge)

Suspended (test) masses can be considered free in the horizontal plane (z = 0).

We study in the TT gauge the propagation of light between them. Along one arm, the effect of a + wave:

$$ds^{2} = -c^{2}dt^{2} + [1 + h_{+}]dx^{2} = 0$$

$$\int dt = \frac{1}{c} \int \sqrt{1 + h_{+}} dx \approx \frac{1}{c} \int 1 + \frac{1}{2}h_{+}dx$$

$$\Delta t \approx h_{+}L/2c$$
Round trip back to beam-splitter:
$$\Delta t_{x} \approx h_{+}L/c \qquad (\Delta t_{y} \approx -h_{+}L/c)$$
Difference between x and y round-trip times:

Pendulum

Suspension _Test Masses

 $\Delta \tau \approx 2h_+L/c$ $(\Delta \phi \approx 2h_+L 2\pi/\lambda_L)$

Cosmological redshift and comoving coordinates

What have in common GW detectors and the Hubble law.

Comoving coordinates: assign constant spatial coordinate values to observers who perceive the universe as homogeneous and isotropic. Such observers "comove" with the Hubble flow.

 $ds^{2} = -c^{2}dt^{2} + R^{2}(t)[dx^{2} + dy^{2} + dz^{2}]$

where R(t) is the cosmic scale factor.

In an expanding Universe, R(t) is an increasing function of time. Light emitted with wavelength λ_0 when the cosmic scale factor was $R(t_0)$ is transformed by the cosmic expansion into light we receive λ_1 when the cosmic scale factor has grown to $R(t_1)$:

$$\frac{\lambda_1}{\lambda_0} = \frac{R(t_1)}{R(t_0)} = 1 + z \quad \text{Cosmological}_{\text{redshift of light}}$$

Antimatter web comics break

antimatter webcomics.com

9

GW detectors: a simple Michelson interferometer

Nd:YAG laser:

- Laser light is split in two orthogonal paths by a beam-splitter (BS). These are reflected back toward the BS by mirrors at the ends of the arms;
- 2. When recombined at the BS, **they interfere**. If the arms are exactly the same length (up to $n\lambda_L$), the light returns entirely toward the laser: destructive interference;
- 3. If the arms differ by an amount that is not an integer number of wavelengths, then the destructive interference will be incomplete: light passes to the photodiode (PD)

Estimated sensitivity (I):

Francesco Di Renzo – Sexten, June 28, 2019

GW detectors: a simple Michelson interferometer

Estimated sensitivity (II):

Use photons instead of lengths. The rate at which photons arrive to the PD follows a Poisson statistic: $\Delta L \approx \frac{N_{\text{ph.}}^{1/2}}{N_{\text{ph.}}} \frac{N_{\text{umber}}}{\lambda_L}$ where: $N_{\text{ph.}} = \frac{P_L}{hc\lambda_L} \tau \sim \frac{P_L}{hc\lambda_L} \frac{1}{f_{\text{gw}}}$ Symmetric port For $P_L = 1$ W, $f_{\text{gw}} = 300$ Hz:

$$h \approx \frac{\Delta L}{L} \sim \frac{N_{\rm ph.}^{-1/2} \lambda_L}{L} \sim 10^{-17}$$

GW detectors: a Fabry-Pérot Mich. interferometer

A **Fabry-Pérot interferometer** is comprised of two mirrors along an optical axis which form a cavity;

- 1. If the separation between the two mirrors is correctly tuned, there is a build-up of light power;
- 2. In TT frame: if the light is "detuned" by a GW, a huge amount of power leaks out of the cavity;
- In detector frame: light bounces back and forth a huge number of times, increasing the "lengthening" effect of the GW on detector arms.

Estimated sensitivity:

GW detectors: power recycled F.-P. Mich. interf.

Power recycling: a mirror (PRM) is added between the laser and the beam splitter, which creates an effective cavity between the recycling mirror and the compound mirror representing the Fabry-Pérot Michelson interferometer.

By tuning this cavity for a power build-up, we can increase the light power stored into the compound interferometer interferometer (up to ~MW in the arms).

This reduces the shot noise but increases the radiation pressure noise...

GW detectors: dual recycled F.-P. Mich. interf. w. SQZ

Signal recycling: inserting a signal recycling mirror (SRM) between the beam splitter and the output port, we can recycle the *signal sidebands* leaving the interferometer towards the output port. This will increase the sensitivity at particular frequencies.

Squeezed light: quantum squeezing of the light can be used to reduce the effect of the shot noise and improve sensitivity.

GW detectors: optical layout recap

Optical layout in reality...

Noise budget: fundamental vs. actual

17

Scheduled sensitivity upgrades

Summary of GWTC-1

GWTC-1: <u>https://arxiv.org/pdf/1811.12907.pdf</u> Pop: https://arxiv.org/pdf/1811.12940.pdf Francesco Di Renzo – Sexten, June 28, 2019

Alerts sent during O3

- S190524q (retracted due to non-stationary noise in the highest sensitivity detector L1)
- S190602aq, the last potential BBH

Number of O3 and O2+O1 detections vs run time

21

Detector Performance: O3 Cumulative Duty Factor

22

Detector Performance: BNS range

BNS range [Bassan 2014]:

$$\frac{d_{\text{range}}}{1 \text{ Mpc}} = 0.86 \times 10^{-20} \left(\frac{\mathcal{M}}{M_{\odot}}\right)^{5/6} \sqrt{\int_{f_{\text{min}}}^{f_{\text{ISCO}}} \frac{f^{-7/3}}{|h(f)|^2} df}$$

1164556817-1187733618, state: All] Binary neutron star inspiral range

60

Angle-averaged range [Mpc]

 $\dot{40}$

20

<u>o</u> 100

dist

Total dur

H1

120

23

100

Thank you for the attention

https://www.tre-ci

SEXTEN CENTER FOR ASTROPHYSICS

Francesco Di Renzo 🔺

- University of Pisa & INFN section of Pisa 🏦
 - francesco.direnzo@pi.infn.it 🖂
 - www.pi.infn.it/~fdirenzo 🌐

Bibliography

Maggiore, M., Gravitational Waves: Volume 1: Theory and Experiments. Oxford University Press, 2008.

Einstein, A., Feldgleichungen der Gravitation The Field Equations of Gravitation, *Preussische Akademie der Wissenschaften, Sitzungsberichte*, **1915 (part 2)**, 844–847.

Einstein, A., Näherungsweise Integration der Feldgleichungen der Gravitation Approximative Integration of the Field Equations of Gravitation, *Preussische Akademie der Wissenschaften, Sitzungsberichte*, **1916 (part 1)**, 688–696.

Saulson, P.R., If light waves are stretched by gravitational waves, how can we use light as a ruler to detect gravitational waves?, American Journal of Physics **65**, 501 (1997).

Hammond, G. Hild, S. Pitkin, M., Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors, Journal of Modern Optics, Volume 61, Issue sup1, 2014, pp.S10-S45.

Aasi, J, Advanced LIGO and Advanced Virgo Xollaboration. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. *Nature Photonics*, 7(8), 613-619 (2013).

