
Francesco Di Renzo

University of Pisa & INFN section of Pisa

Gravitational wave detectors
working principle, optical layout, and updates

MULTIMESSENGER DATA ANALYSIS IN THE ERA OF CTA

SEXTEN – JULY 28, 2019



Inserire qui il logo o il nome

1. Working principle of interferometric gravitational wave detectors:

• “Spacetime tells matter how to move, matter tells spacetime how to curve”;

• The “rubber ruler” puzzle;

• Cosmological redshift of light.

2. From a simple Michelson interferometer to modern GW detectors:

• (Simplified) optical layout and readout;

• (Main) noise sources;

• Sensitivity: design vs. actual.

3. Updates from the Advanced Virgo and Advanced LIGO O3 science run.

Plan of the presentation
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Linearized theory: 𝑔𝜇𝜈 ≈ 𝜂𝜇𝜈 + ℎ𝜇𝜈. GR admits propagating, wave-like solutions [Einstein 

1916]. In Lorentz gauge:

□ℎ𝜇𝜈 = −
16𝜋𝐺

𝑐4
𝑇𝜇𝜈 + 𝒪(ℎ2)

Gravitational Waves (GW): ripples in spacetime [Kip Thorne], caused by accelerating masses 
with non-constant quadrupole moment, which propagates in spacetime at speed 𝑐.

The Einstein Equations

3Francesco Di Renzo – Sexten,  June 28, 2019

or ‘‘spacetime tells matter how to move, matter tells spacetime how to curve’.’ John A. Wheeler. 

In general relativity gravity is described by the 
curvature of spacetime [Einstein 1915]:

𝐺𝜇𝜈 =
8𝜋𝐺

𝑐4
𝑇𝜇𝜈

Curvature of 
spacetime

Distribution of 
mass/energy

Some constants

D’Alambertian
(wave operator)

Credit: R. Hurt/Caltech
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Production: accelerating mass densities:

ℎ𝜇𝜈 ≈
2

𝑟

𝐺

𝑐4
ሷ𝐼𝜇𝜈

E.g.: for an orbiting binary system 𝐼 ≈ 𝑀𝑅2, ሷ𝐼 ≈ 4𝑀𝑅2𝜔orb.
2 ,

ℎ ≈
8𝐺

𝑐4
𝑀

𝑟
𝑅2𝜔orb.

2 ≈
8𝐺

𝑐2
𝑀

𝑟

𝑣

𝑐

2

∼ 𝟏𝟎−𝟐𝟏

Production and free propagation of GWs
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𝑅

𝜔orb.

Credit:Teviet Creighton

Free propagation along “𝑧-axis” in vacuum (𝑇𝜇𝜈 = 0):

□ℎ𝜇𝜈 = 0 ⟹ ℎ𝜇𝜈 𝑡, 𝑧 = ℎ𝜇𝜈𝑒
𝑖 𝑘𝑧−𝜔𝑡 with 𝜔/𝑐 = 𝑘

Second derivative of
quadrupole moment
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Customary picture in the detector reference frame:
a circular array of test masses responds to an incoming GW (perpendicular to the screen):

+ polarization × polarization the “rubber ruler”

Refer to [Maggiore, 2008] for the corresponding equations of motion.

Interaction of GWs with test masses
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and the “rubber ruler” puzzle. Peter R. Saulson. 

The rubber ruler paradox: the arms of an interferometer 
are lengthened by a gravitational wave. The wavelength
of the light in an interferometer is also lengthened by a 
gravitational wave, by the same factor. 

So, how can we use light as a ruler to detect 
gravitational waves?

Are we using a “rubber ruler” that participates in the 
same distortions as the system whose distortions we 
are trying to measure?

Peter R. Saulson
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Customary picture to represent GW propagating degrees of freedom:

ℎ𝑖𝑗
TT 𝑡, 𝑧 =

ℎ+ ℎ× 0
ℎ× −ℎ+ 0
0 0 0

cos 𝜔 𝑡 − 𝑧/𝑐

In this gauge, GWs are transverse and traceless (TT): ℎ+ and ℎ× d.o.f.

In this frame, objects initially at rest remain at rest, even after the arrival of the wave.
That is, they are “free falling”:

อ
𝑑2𝑥𝑖

𝑑𝜏2
𝜏=0

= − ቤΓ𝜈𝜌
𝑖 𝑥

𝑑𝑥𝜈

𝑑𝜏

𝑑𝑥𝜌

𝑑𝜏
𝜏=0

= ቮΓ00
𝑖

𝑑𝑥0

𝑑𝜏

2

𝜏=0

= 0

Because, in this gauge, the Christoffel symbol Γ00
𝑖 = 1

2
2𝜕0ℎ0𝑖 − 𝜕𝑖ℎ00 = 0. [Maggiore 2008]

Only a non-gravitational force can cause a mass to move, i.e.to change its coordinates. 

GW interaction in the TT frame 
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or how to exploit gauge freedom in our favor.

Geodesic
equation
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Suspended (test) masses can be considered free in the 
horizontal plane (𝑧 = 0).

We study in the TT gauge the propagation of light between 
them. Along one arm, the effect of a + wave:

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 1 + ℎ+ 𝑑𝑥2 = 0

න𝑑𝑡 =
1

𝑐
න 1 + ℎ+ 𝑑𝑥 ≈

1

𝑐
න1 +

1

2
ℎ+𝑑𝑥

Δ𝑡 ≈ ℎ+𝐿/2𝑐

Round trip back to beam-splitter:

Δ𝑡𝑥 ≈ ℎ+𝐿/𝑐 Δ𝑡𝑦 ≈ −ℎ+𝐿/𝑐

Difference between 𝑥 and 𝑦 round-trip times:

𝚫𝝉 ≈ 𝟐𝒉+𝑳/𝒄 𝚫𝝓 ≈ 𝟐𝒉+𝑳 𝟐𝝅/𝝀𝐋

Light travel time through the detector (TT gauge) 
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Light-like 
interval

Opposite sign 
along 𝑦
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Comoving coordinates: assign constant spatial 
coordinate values to observers who perceive the 
universe as homogeneous and isotropic. Such observers 
“comove” with the Hubble flow. 

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑅2(𝑡) 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

where 𝑅(𝑡) is the cosmic scale factor.

In an expanding Universe, 𝑅(𝑡) is an increasing function 
of time. Light emitted with wavelength 𝜆0 when the 
cosmic scale factor was 𝑅(𝑡0) is transformed by the 
cosmic expansion into light we receive 𝜆1 when the 
cosmic scale factor has grown to 𝑅 𝑡1 :

𝜆1
𝜆0

=
𝑅(𝑡1)

𝑅(𝑡0)
= 1 + 𝑧

Cosmological redshift and comoving coordinates
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What have in common GW detectors and the Hubble law.

Cosmological 
redshift of light

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiAypjDw4fjAhUxMuwKHfESBvcQjRx6BAgBEAU&url=%2Furl%3Fsa%3Di%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dimages%26cd%3D%26ved%3D%26url%3Dhttps%253A%252F%252Fen.wikipedia.org%252Fwiki%252FCosmic_microwave_background%26psig%3DAOvVaw26I0JOgDgWIhuT3DKtk9Ec%26ust%3D1561651550313950&psig=AOvVaw26I0JOgDgWIhuT3DKtk9Ec&ust=1561651550313950
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Antimatter web comics break
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antimatterwebcomics.com
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1. Laser light is split in two orthogonal paths by a 
beam-splitter (BS). These are reflected back 
toward the BS by mirrors at the ends of the arms;

2. When recombined at the BS, they interfere. If the 
arms are exactly the same length (up to 𝑛𝜆𝐿), the 
light returns entirely toward the laser: destructive 
interference;

3. If the arms differ by an amount that is not an 
integer number of wavelengths, then the 
destructive interference will be incomplete: light 
passes to the photodiode (PD)

Estimated sensitivity (I):

ℎ ≈
Δ𝐿

𝐿
∼
𝜆𝐿
𝐿
∼ 10−9

GW detectors: a simple Michelson interferometer
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Antisymmetric 
port

Symmetric port

Nd:YAG laser:
𝜆𝐿 = 1064 nm

𝐿 ∼ 1 km
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Estimated sensitivity (II):

Use photons instead of lengths. The rate at which
photons arrive to the PD follows a Poisson statistic:

Δ𝐿 ≈
𝑁ph.
1/2

𝑁ph.
𝜆𝐿

where:

𝑁ph. =
𝑃𝐿
ℎ𝑐𝜆𝐿

𝜏 ∼
𝑃𝐿
ℎ𝑐𝜆𝐿

1

𝑓gw

For 𝑃𝐿 = 1 W, 𝑓gw = 300 Hz:

ℎ ≈
Δ𝐿

𝐿
∼
𝑁ph.
−1/2

𝜆𝐿

𝐿
∼ 10−17

GW detectors: a simple Michelson interferometer
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Antisymmetric 
port

Symmetric port

Number
fluctuation

Readout time
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A Fabry-Pérot interferometer is comprised of two 
mirrors along an optical axis which form a cavity;

1. If the separation between the two mirrors is 
correctly tuned, there is a build-up of light power;

2. In TT frame: if the light is “detuned” by a GW, a 
huge amount of power leaks out of the cavity;

3. In detector frame: light bounces back and forth a 
huge number of times, increasing the 
“lengthening” effect of the GW on detector arms.  

Estimated sensitivity:

ℎ ≈
Δ𝐿

𝜆gw
∼
𝑁ph.
−1/2

𝜆𝐿

𝜆gw
∼ 10−20

GW detectors: a Fabry-Pérot Mich. interferometer
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Fabry-Pérot
cavity

Partially 
reflective input 
test mass

Max effective 
length
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Power recycling: a mirror (PRM) is added 
between the laser and the beam splitter, which 
creates an effective cavity between the recycling 
mirror and the compound mirror representing 
the Fabry-Pérot Michelson interferometer.

By tuning this cavity for a power build-up, we can 
increase the light power stored into the 
compound interferometer interferometer (up to 
∼MW in the arms).

This reduces the shot noise but increases the 
radiation pressure noise…

GW detectors: power recycled F.-P. Mich. interf.
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Signal recycling: inserting a signal recycling mirror 
(SRM) between the beam splitter and the output 
port, we can recycle the signal sidebands leaving 
the interferometer towards the output port. This 
will increase the sensitivity at particular 
frequencies.

Squeezed light: quantum squeezing of the light 
can be used to reduce the effect of the shot 
noise and improve sensitivity.

GW detectors: dual recycled F.-P. Mich. interf. w. SQZ
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GW detectors: optical layout recap
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Optical layout in reality…
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Noise budget: fundamental vs. actual
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Scheduled sensitivity upgrades
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Aasi et al. 2013
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Summary of GWTC-1 
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GWTC-1: https://arxiv.org/pdf/1811.12907.pdf
Pop: https://arxiv.org/pdf/1811.12940.pdf

https://arxiv.org/pdf/1811.12907.pdf
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Alerts sent during O3
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• S190524q (retracted due to 
non-stationary noise in the 
highest sensitivity detector 
L1)

• S190602aq, the last potential 
BBH
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Number of O3 and O2+O1 detections vs run time
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Detector Performance: O3 Cumulative Duty Factor
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Detector Performance: BNS range
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BNS range [Bassan 2014]:

𝑑range
1 Mpc

= 0.86 × 10−20
ℳ

𝑀⊙

5/6

න
𝑓
min

𝑓
ISCO 𝑓−7/3

ℎ(𝑓) 2 𝑑𝑓
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