Multimessenger Data Analysis in the era of CTA

AGN and neutrino emission

Chiara Righi

ISTITUTO NAZIONAL DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

26 June 2019

Outline

Introduction

NGC 1068

Low luminosity radiogalaxies

Blazar

FSRQ as neutrino sources

BL Lacs as neutrino sources

The case of TXS 0506+056

Some models

Conclusions

Neutrino flux

Lipari, 2003

Neutrino flux

 Tracers of cosmic rays
Information on the galactic and extragalactic accelerators

Neutrino signature on ice

Cascade

Track

Neutrino signature on ice

Cascade

Track

 $\nu_{\mu} + N \rightarrow \mu + N$

High Energy Starting point Events (HESE)

 $\nu_x + N \rightarrow \nu_x + X$ $\nu_x + N \rightarrow x + N$

Discovery by Ice Cube

Arrival directions of most energetic neutrino events (HESE 6yr (magenta) & $\nu_{\mu} + \overline{\nu}_{\mu}$ 8yr (red))

IceCube Collaboration et al., 2017a

Discovery by Ice Cube

IceCube Collaboration et al., 2017a

$p+p \to \pi + X$

 $p + \gamma \rightarrow \pi + X$

 $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} \rightarrow e^{\pm} + \nu_e + 2\nu_{\mu}$ $\pi^0 \rightarrow \gamma + \gamma$

HE neutrino production

$p + p \rightarrow \pi + X$

- Galactic sources
- Star forming Galaxies
- AGN Winds
- Radiogalaxies

Palladino & Vissani 16 Palladino & Winter 18 Neronov et al. 16a,b,c Tamborra et al. 14 Loeb & Waxman 06 Lamastra et al. 14,16

$$p + \gamma \to \pi + X$$

RadiogalaxiesJets (GRB or Blazar)

Waxmann & Bahcall 97 Mannheim 95 Atoyan & Dermer 03 Bottcher et al. 13 Petropoulou et al. 15,16 Tavecchio et al. 14,15 Righi et al. 17,18

HE neutrino production

$$p + p \rightarrow \pi + X$$

 Galactic sources
Star forming Galaxies
AGN Winds
Radiogalaxies

Palladino & Vissani 16 Palladino & Winter 18 Neronov et al. 16a,b,c Tamborra et al. 14 Loeb & Waxman 06 Lamastra et al. 14,16

Active Galactic Nuclei

AGN Winds the case of NGC 1068

AGN Winds the case of NGC 1068

Where gamma emission comes from?

Starburst model

AGN jet model

AGN wind model

Lamastra et al. 2016

AGN Winds

the case of NGC 1068

NGC 1068 Galaxy

AGN Wind

Shock with the ISM

AGN Winds

the case of NGC 1068

AGN Winds the case of NGC 1068

Lamastra et al. 2019

AGN Winds the case of NGC 1068

Lamastra et al. 2019

AGN Winds

the case of NGC 1068 ... or M 77

IceCube Collaboration, XVIII International Workshop on Neutrino Telescope

Radiogalaxies the case of FR0

Baldi et al. 2015, 2017

Tavecchio et al. 2018

Radiogalaxies the case of FR0

Tavecchio et al. 2018

HE neutrino production

$p + p \rightarrow \pi + X$

- Galactic sources
- Star forming Galaxies
- AGN Winds
- Radiogalaxies

Palladino & Vissani 16 Palladino & Winter 18 Neronov et al. 16a,b,c Tamborra et al. 14 Loeb & Waxman 06 Lamastra et al. 14,16

$$p + \gamma \to \pi + X$$

RadiogalaxiesJets (GRB or Blazar)

Waxmann & Bahcall 97 Mannheim 95 Atoyan & Dermer 03 Bottcher et al. 13 Petropoulou et al. 15,16 Tavecchio et al. 14,15 Righi et al. 17,18

Neutrinos from Blazars

What are Blazars?

Blazars

Spectral Energy Distribution (SED) Dominated by the relativistically boosted non-thermal continuum emission of the jet

MODELS

Blazars

FSRQs

BL Lacs

Farina et al. 12

Landoni et al. 13

Blazars

FSRQs

BL Lacs

BlackHole

Accretion disk

FSRQs as neutrino sources

Broad line resir

Environment rich of photons:

- Synchrotron radiation
- BLR radiation
- Torus radiation

FSRQs as neutrino sources

Possible correlation between a HESE and a flaring FSRQ

Bonnoli et al. 15

BlackHole

Accretion flow

BL Lacs as neutrino sources

Environment poor of photons:

Synchrotron radiation
Inefficient accretion

State of the art until 2016

Padovani et al.16

Tavecchio et al. 14,15

BL Lacs as neutrino sources

Kovalev et al. 07

Ghisellini et al. 05

C 170922A & TXS 0506+056

TITLE: GCN CIRCULAR NUMBER: 21916 SUBJECT: IceCube-170922A - IceCube observation of a high-energy neutrino candidate event DATE: 17/09/23 01:09:26 GMT

IC 170922A & TXS 0506+056

TXS 0506+056 with MAGIC

TXS 0506+056 with MAGIC

TXS 0506+056 with MAGIC

What we learnt from TXS

- Neutrino emission constrained by cascade flux in X-ray band
- Pure hadronic model does not work
- One zone models implausible

Take home messages

Multimessenger astronomy with neutrinos has started...more or less

Blazars seems to be the best bet as counterpart of E>100TeV neutrinos

Transient objects seems the easiest object to observe with IceCube

Now we have strong constraints on Blazar theory

Waiting for new events...

Thanks!