

3 The Multi-Mission Maximum Likelihood framework

Nicola Omodei

nicola.omodei@stanford.edu

• Docker provides an easy way to run 3ML on you computer.

Docker

- 1. Install Docker for your platform.
 - 1. https://docs.docker.com/install/
 - 2. Installers for OsX and Windows provided in the USB pen
- 2. Install the threeml docker file
 - 1. Due to slow network there is a threeML-docker.zip in the USB pen containing the docker image and all the files you need to run this tutorials. Expand the archive, and go into the threeML-docker directory:
- > cd threeML-docker
 - 2. install the image (you can skip this point if you have a good network):
- > docker load -i threeml.tar

3. Run the docker (you can see what this script does just opening it...):

>./run.sh

- Or copy and paste one of these URLs:
 - http://(10728d6cdbaa or 127.0.0.1):8888/?token=12f470d746a0c90ed5f78f7f1047bc8c6ed3397517d6c0c8

> open http://127.0.0.1:8888/?token=12f470d746a0c90ed5f78f7f1047bc8c6ed3397517d6c0c8

To access the notebook, open this file in a browser:

file:///root/.local/share/jupyter/runtime/nbserver-64-open.html

Introduction to 3ML

- General idea
- Installation
- Tutorials
 - LAT Only analysis (interface to fermipy)

Agenda

- GRB080916C: LAT+LLE+GBM
- GRB190114C: LAT+GBM+LLE+XRT

- Existing multi-instrument solutions:
 - XSPEC, GSPEC, RMFIT, ISIS, SHERPA, gammapy, gammalib,...
 - Good for instruments that share the same analysis and with data in the same data-format (OGIP)
 - They re-implement analysis tools (missing the opportunity to use up-to-date software developed by various instrument teams)
 - Not all instrument can be reconnected to the same analysis (One size does not fit all!)

- Each instrument makes its own analysis, optimizing the model (often different) and provide a "butterfly" or flux points
 - The spectrum of the source is independently fit by every instrument, and not globally fitted
 - A chi² fit is done on the resulting flux points (or butterflies). Now the source model is not the same that was used to fit the data in the first place...
- Not really rigorous way to analyze the data.

- unfortunately widely used in our community...

Better solution for multi-instrument fits

- The parameters of the models are globally marginalized (each instrument participate with its strength)
- There are instrument specific background (instruments have different backgrounds) that are fitted independently
- One definition of the model (parameters of the source are fitted taking the likelihood values from every dataset in the fit).
- The software provides an interface to the <u>model manager</u>, which interacts, using <u>plugins</u>, with the existing software developed by the various instrument teams

- Receive input the model, return the value of the likelihood...

• Extreme flexible:

- No limitation on the analysis implemented, language used, messenger, IRFS, background.
- python plugins interface with any type of code developed by the instrument team
- Existing solutions (Science Tools, XSPEC, sherpa,...) can be used as plugin.

Existing plugins

- Fermi LAT:
 - Fermipy
 - Unbinned analysis using gtburst products (for GRB, solar flares,...)
- Fermi GBM, LLE for GRB and (solar flares).
 - spec, time and tte data
- OGIP "XSPEC type": anything that can be fit in XSPEC
- HAWC both point and extended sources (for HAWC collaboration members)
 - Probably will be the standard package for HAWC analysis.
 - Several analysis already published using 3ML.
- VERITAS: only point sources (internal)
- Optical: with ~2000 optical filters (thanks to the Spanish Virtual Observatory Filter profile service)
- Many other groups showed interests in 3ML.
- CTA joint analysis developing ctools plugin (Luigi: "straightforward!")

- 3ML is considered as HAWC baseline analysis tool
- Possible that HAWC data will be public

Distribution

Documentation:

– <u>https://threeml.readthedocs.io/en/latest/index.html</u>

• If you want to install with conda fermiST, fermipy, and threeML:

#!/bin/bash conda create --name fermi3ML -c conda-forge -c fermi -c threeML source activate fermi3ML conda install -c conda-forge -c threeml -c fermi threeml xspec-modelsonly fermipy fermitools

- This creates an environment (fermi3ML) with everything in it!
- Few things to remember:
 - Conda environment is in: \$CONDA_PREFIX (mine is: /Users/omodei/anaconda/envs/ fermi3ML)
 - python code of threeML & astromdodels in:

```
$CONDA_PREFIX/lib/python2.7/site-packages/threeML
$CONDA_PREFIXlib/python2.7/site-packages/astromodels
```

To start the notebook: jupyter notebook

• Docker provides an easy way to run 3ML on you computer.

Docker

- 1. Install Docker for your platform.
 - 1. https://docs.docker.com/install/
 - 2. Installers for OsX and Windows provided in the USB pen
- 2. Install the threeml docker file
 - 1. Due to slow network there is a threeML-docker.zip in the USB pen containing the docker image and all the files you need to run this tutorials. Expand the archive, and go into the threeML-docker directory:
- > cd threeML-docker
 - 2. install the image (you can skip this point if you have a good network):
- > docker load -i threeml.tar

3. Run the docker (you can see what this script does just opening it...):

>./run.sh

file:///root/.local/share/jupyter/runtime/nbserver-64-open.html

- Or copy and paste one of these URLs:
 - http://(10728d6cdbaa or 127.0.0.1):8888/?token=12f470d746a0c90ed5f78f7f1047bc8c6ed3397517d6c0c8

> open http://127.0.0.1:8888/?token=12f470d746a0c90ed5f78f7f1047bc8c6ed3397517d6c0c8

To access the notebook, open this file in a browser:

For the heads on...

C jupyter	Quit	Logout
Files Running IPython Clusters Nbextensions		
Select items to perform actions on them.	Upload	New - 2
□ 0 ► /	Modified	File size
□ □ bn080916009 21	days ago	
D bn190114873	days ago	
□ □ Crab 4 mi	nutes ago	
GRB080916C 4 mi	nutes ago	
□ □ GRB190114C 4 mi	nutes ago	
Trials.ipynb	days ago	170 kB
TS_distribution.ipynb	days ago	250 kB
Dockerfile ar	nonth ago	2.13 kB
gtburst.log	days ago	420 B
ar 🗋 run.sh	nonth ago	90 B
D threeml.tar 20	hours ago	8.91 GB

Crab/Crab.ipynb

- Crab fit with 3ML interface tp fermipy
- Make a fit from a 4FGL catalog source (Crab) modeling the source with synchrotron and IC emission (from 4FGL)
- Plot spectra
- Run Bayesian inference analysis

GRB080916C/GRB080916C.ipynb

- GBM+LAT+LLE time-resolved analysis, like the one in the Science paper!

GRB190114C/GRB190114C.ipynb

- LAT+XRT joint analysis

TS_distribution.ipynb

```
- Obtaining the distribution of the null hypothesis and show that it is distributed as a chi<sup>2</sup>
```

Trials.ipynb

- Showing how the TS distribution is affected by the number of trials (in the context of GRB and GW followup)

gtburst

- gtburst is a graphical user interface (GUI) we wrote a while back to analyze Fermi LAT GRB.
 - Download GBM, LAT and LLE data for GBM trigger catalog bursts
 - Make likelihood analysis (binned or unbinned) of LAT data
 - Prepare PHA file to be analyzed in XSPEC
 - Locate GRB with gttsmap

gtburst is distributed with Fermi ScienceTools In the conda environment with fermitools:

> gtburst

Swift Burst Analyzer

http://www.swift.ac.uk/burst_analyser/

	T ALL	BAT U.S. site		ERSITY C	DF R
Swift: Catching Gamma-Ray Bursts on the		U.K. site	Dept. of Physics & Astronomy		
			XRC	A	
Home About Support Data Access	Data Analysis	site map Search:			?
Analyser > GRB 190114C	Data analysis overview Swift software	^{cts} Publications Lir	ks Home products	>	GRB Burst
The Swif	Build XRT products	GRB 190114C			
Last upda Data we	BAT data analysis guide XRT data analysis guide	2000, version 6; -T version 6.22			
Related pages: <u>Er</u> <u>GRB Region informat</u> and	XRT digest UVOT data analysis guid	de <u>Spectrum</u> <u>I</u> <u>Download obs da</u> <u>Circulars</u>	<u>mage </u> ata <u>BAT</u>		

From 2016 January, the light curve plots support interactive zooming and exploring. See <u>the jsPlot</u> <u>documentation</u> for details. Also, from the same date, the first plot on this page is the **observed** flux in the native band of each instrument (including UVOT where available).

Index of bursts.

About these products.

Jump to: Observed flux | BAT+XRT | BAT | XRT | BAT no evolution.

Downloads: BAT spectral evolution data | XRT spectral evolution data | All files for this object.

All data uses absorption N_H =7.672 × 10²² cm⁻² at z=0. (Source: the late-time spectrum from the <u>XRT spectrum repository</u>).

