VHE neutrino astronomy

Are we there yet...?

Konstancja Satalecka, DESY Multimessenger Data, Sexten, 2019

Cosmic messengers

The multi messenger approach

Coordinated observation and interpretation of distinct signals ("messengers") associated with two or more of the four fundamental forces:

- arcmin resolutionabsorption
- I-10 deg resolution
 + no absorption
- deflected in mag. filedsGZK cut-off
- localisation 100 deg²
 + no-absorption

Cosmic messengers

The neutrino window to the Universe

Above ~PeV energies the Universe is opaque to photons due to absorption on EBL

 $\gamma + \gamma_{IR,CMB,radio} \rightarrow e^+ + e^-$

Neutrino

Multi-tasking particle

 Astrophysics is our main motivation, but once you invest all this money you can as well have a look at

Neutrinos, y-rays & CRs

Neutrinos, y-rays & CRs

Neutrinos, y-rays & CRs

- How are the different messengers connected
- What are their sources?
- What are the acceleration/emission/propagation processes?
- Neutrino flux ~W&B bound → real connection or accident?

Very similar energy output for all three messengers!

Neutrino detection

Low cross-sections, low fluxes, hopeless...?

Neutrino flux is extremely small

- At 10¹⁵ eV: 0.01 neutrinos per (year, km², sr)
- At 10¹⁸ eV: 10⁻¹⁰ neutrinos per (year, km², sr)

Instruments: now

-

0.02 km³ Medium: water 1998 - ...

1 km³ Medium: ice 2011- ...

Instruments: now

0.01 km³ Medium: water 2008 - 2019

Water:

Con: currents, corrosiveness of sea water, animals, ships, bioluminescence, ... **Pro:** Less scattering (better angular resolution), easier accessibility, different locations (wider field of view)

Ice:

Con: extreme cold, expensive drilling, scattering through dust, limited in location, unknown ice quality, borehole restricted sensors, ...
Pro: stable configuration, no non-particle background light, ...

1 km³ Medium: ice 2011- ...

Neutrino detection

Event Signatures

Factor of ~2 E resolution < 1 deg angular resolution

Neutral-current / v

(data)

Charged-current v $_{\tau}$

(simulation)

Double cascade

(resolvable above ~100 TeV deposited energy)

The three signal channels

Cosmic neutrinos are not all of the story....

Event rates per year:

- Atmospheric μ (99.999% of triggered events) 7 x 10¹⁰ (2000/s)
 - CR Spectrum...YES
 - CR Anisotropy...YES
 - CR Composition...Soon
- Atmospheric V (residual background) 5×10^4 (1/6 minutes)
 - Spectrum....YES
 - Oscillations...YES
 - Sterile ...Not yet
- Astrophysical neutrinos: ~ O(10)
 - Diffuse High Energy...YES
 - Multimessenger....YES
 - Source Catalog....Not yet

→ We need clever background rejection techniques!!

Neutrino detection

Background rejection

Background rejection:

- By direction: accept only events coming from North (up-going)
- By event type: cascades only produced by NC and ne CC
- By energy: expected astrophysical flux harder than atmospheric accept only high energy events

Neutrino detection

Background rejection - analysis tricks

<u>Point sources</u>: search for excesses from few strong objects. Localised (in space and/or time) <u>Diffuse searches</u>: search for an overall excess from an ensemble of many weak sources. Deviation in energy spectrum

for atms. $\mu \rightarrow$ reject tracks entering the detector from outside, expected background: 6±3.4 /year

for atms. $V \rightarrow$ reject tracks accompanied by air showers with muons, expected background: $4^{+3.6}_{-1.2}$ /year (detectable when coming from the Southern hemisphere)

+ charge cut (> few 1000 phe) to select very high energy events

Astrophysical neutrinos

> 100 and counting...

+33 events from ANTARES $\rightarrow \rightarrow$

Astrophysical neutrinos

Diffuse flux

IceCube HESE 7.5 yrs (2011-2017)

- All-flavour analysis compatible with the v_{μ} -tracks only > 200 TeV
- Best fit: one-component power law (see legend)

ANTARES 9 yrs (2007-2015)

- All-flavour analysis (track+showers)
- Signal modeled according to the IceCube flux
- Φ_0 (100 TeV) = (1.7 ± 1.0) ×10⁻¹⁸ GeV⁻¹ cm⁻² s⁻¹ sr⁻¹, spectral index Γ = 2.4 +0.5/-0.4
- 33 events (19 tracks + 14 showers) in data
- 24 ±7 (stat.+syst.) events background in MC
- + 1.6 σ excess, null cosmic rejected at 85%

DESY. | VHE nu astrophysics | Konstancja Satalecka, Sexten 25.06.2019

Point sources...

...not yet.

- Most recent results:
 - IC, 8 years
 - ANTARES 9 years
 - No significant clustering in space
 - No excess on selected source lists
- Previous off-line searches, spatial and temporal did not revel any significant excess neither...
- IC + ANTARES: complimentary field of view
- Joined IC + ANTARES point-source search in preparation!

Population studies

Active Galactic Nuclei

Correlation of 7 years of IceCube neutrino events with > 860 blazars from 2LAC (Fermi/LAT)

Blazars account for: 85% of extragalactic γ background, but only < 27% of the neutrino flux

Population studies

Gamma-ray Bursts

Gamma-ray connection: Detection of long GRBs by MAGIC & HESS Great prospects for CTA! (see talk by E.Bissaldi)

GW connection: production of neutrinos and g-rays in short-GRBs and GW events caused by mergers (NS-NS) (talk by G.A.Prodi)

- > 1100 GRBs correlated with IceCube data
- GRBs contribute less than 1% to observed diffuse neutrino flux
- Most popular neutrino emission models excluded (production in prompt phase)
- NOT excluded: production in precursor or after-glow phase, multi zone models, "chocked GRBs"...

Real-time MultiMessenger

Catch them in the act!

- Key for understanding neutrino source emission: **simultaneous MWL data**
- Alerts → make sure we get them when nu telescope sees something interesting!
- IC alerts:
 - Public: single high energy events > 60 TeV (via AMON, since 2016)
 - Private: event clusters, specific programs aimed at gamma-ray and optical telescopes (since 2012)

ANTARES alerts:

- Only private
- Optical, X-ray, gamma-ray follow-up
- Single events & doublets

IceCube: M.G. Aartsen et al., Astropart. Phys. 92 (2017) 30-41s ANTARES: S. Adrián-Martínez et al., JCAP 02 (2016) 062

TXS 0506+056 Neutrino blazar...?

- Texas survey of radio sources, discovered in 1983
- Classified as ISP-type BL Lac object, a subclass of blazars, but recently considered as a "hidden FSRQ" (Padovani et al, MNRAS 484(1):L104-L108 2019)
- Among the brightest 5% of blazars detected in g-rays
- Redshift z=0.3365, ~4 billion light years
- One of the most luminous objects known up to this distance

Real-time MultiMessenger

First evidence for a neutrino source!

The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams. *Science* 361, eaat1378 (2018)

First MultiMessenger SED → bounty of theoretical interpretations! (see talks by Ch. Righi and S.Cutini)

TXS 0506+056

The IACT perspective

- MAGIC: 2 flares + lower state, but no spectral index variability measured
- MAGIC+VERITAS: simple PL, index much softer than Fermi-LAT (~ 4.0)
- \rightarrow clear spectral curvature, apart from EBL effect: internal absorption, primary particle spectral break, production inefficiency...?
- Task for CTA: detailed spectral measurements, look out for hints of hadronic emission signature

The neutrino past of TXS 0506+056

Another evidence for a neutrino source!

B 6.0 6.69 4.5 -log₁₀(p) Declinatio 5.69 3.0 4.69 1.5 0.0 78.36° 77.36° 76.36° **Right Ascension** M.G. Aartsen et al. *Science* 361, 147-151 (2018) IC79 IC86a IC40 IC59 ICC6b IC86c IceCube-170922A Gaussian Analysis log₁₀ p Box-shaped Analysis 30 2 2012 2009 2010 2011 2013 2014 2015 2016 2017

Looking into IC past data: excess of HE neutrino events, between Sep 2014 and Mar 2015, from TXS 0506+056, another **3.5σ evidence**.

S

×n <u>−</u> 0.2

0.0

55000

55500

56000

56500

Time [MJD]

57000

58000

57500

50

TXS 0506+056 2014-2015 neutrino flare

What about CTA?

- Assume that diffuse neutrino flux is produce by "TXS 0506+056-like" sources
- Special class of blazars that undergo 110-day duration flares like TXS0506+056 once every ~10 years
- Gamma-ray flux is parametrized as PL with LE and HE cut-offs (A norm. related to nu flux):

$$\frac{dN}{dE} = AE^{-2} \mathrm{e}^{-E_L/E - E/E_H}$$

- FIRESONG code used for neutrino sources and alert simulations (https://github.com/ChrisCFTung/ FIRESONG):
- Simulations for flaring sources fraction:
- F = 0.5%, 1%, 5%, 10%

TXS 0506+056 2014-2015 neutrino flare

What about CTA?

- FIRESONG simulations for flaring sources fraction:
- F = 0.5%, 1%, 5%, 10%
- CTA IRFs used to calculate the detection probability
- 10 min of observations
- NOTE: IC alerts have ~50% signal purity (divide by 2!)
- NOTE: CTA duty cycle & source visibility

- We can do the same exercise for different source populations, e.g. transients, stable sources
- Prediction: detection/constraints of g-ray flux from neutrino sources depending on local source density
- Work in-progress within the CTA KSP Neutrino Follow-up→ join the CTA Neutrino Team! :)

Connection to GW

GW+EM+nu...?!

- BH-BH mergers probably no EM or nu (depends on environment)
- MeV neutrinos from stellar core collapse
- HE neutrinos + gamma-rays from non-thermal processes (BH+acc. disc \rightarrow jets?!)
- Chocked GRBs only neutrinos and GW!
- Timing of signals from different messengers \rightarrow progenitor
- EM emission \rightarrow localization + redshift
- IC performs an automated analysis +/-500s around each GW alert -> neutrino event list with p-value

GW-170817 and neutrinos

NS-NS megrger, short GRB, kilonova

Observed isotropic-equivalent energy of $E_{iso} \approx 4 \times 10^{46}$ erg, (Fermi-GBM) \rightarrow faint!

Maximum jet misalignment: $\theta_{obs} \leq 36^{\circ}$ at 90%

Typical opening half-angles for short GRBs: $\theta_j \approx 3^\circ - 10^\circ$ Prompt and extended emission models tested for +/- 500 s and +/- 14 days

Most optimistic predictions for small jet viewing angle constrained (in agreement with measurements)

So.... ...are we there yet...?

- Astrophysical neutrinos YES!
- Tau neutrinos maybe...
- Point sources not yet...
- TXS 0506+056 first compelling evidence of a neutrino source?
- Most probably:
 - Many different source populations contribute to the diffuse flux
 - Large number of faint sources
- Real-time alerts and MultiMessenger approach of high interest to the whole astro-community

How to get there?

- More statistics → bigger detectors
- Extended energy range → bigger detectors
- Full sky coverage with high sensitivity → bigger detectors on both hemispheres

Instruments: future

KM3NeT

1 + 0.006 km³ Construction started 2015 Completion ~2021 >1 km³ Construction started 2015 Completion ~2030

STRings for Absorption length in Water Start 2016 Nu telescope in the Pacific...?

10 km³ Ice Č + radio + surf. array Upgrade - approved! Construction start ~2022

The CTA connection

How can CTA help in discovering neutrino sources?

- Most o the objectives already present in our KSPs :)
 - Monitoring of AGN \Rightarrow flare probability
 - MWL campaigns => detailed SED modelling => hints of hadronic emission
 - Follow-up of neutrino alerts & transient alerts (GRB, GW...)
 - Alert the community about observed flares/transients => data exchange & correlation studies
- More studies needed to understand the possible source & optimise CTA strategies:
 - How fast to react?
 - How long to observe?
 - MWL input very important! (e.g. longer decaying transients = observations few days in a row)

BONUS: IACTs as neutrino detectors!

- Feasibility studies with MAGIC for long observations ULs ~ AUGER can be set
- CTA: event rates comparable or higher than for IC

Auger Earth-skimming

 $10^{15} \ 10^{16} \ 10^{17} \ 10^{18} \ 10^{19} \ 10^{20} \ 10^{21} \ 10^{22} \ 10^{23}$

Kachelriess 2009

ASKA 200

 $\log_{10} (E_v/eV)$

38

10-3

10-4

10⁻⁵

10⁻⁶

10

10⁻⁸

10-5

10⁻¹⁰

MAGIC 300 hrs

Thank you!

Back-up

IC/Gen2

The next generation neutrino observatory

- Extension of IC energy range: 100 MeV EeV
- Wide science coverage from oscillations to cosmogenic (GZK) neutrinos^{Surface array}
- Upgrade: 7 strings, test devices 2022/23
- IC/Gen2: construction start ~2025

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 ... 2032

Deployment

KM3Net

The next generation neutrino observatories

Multi-cubic km size neutrino telescope in Mediterranean Sea

- ORCA: neutrino oscillations
 Fist string deployed in 2017
 - Completion ~2021

- ARCA: TeV PeV astrophysical neutrinos (Galactic Center!)
 - First two DU deployed successfully 2016/2017
 - · Completion ~ 2022

Baikal-GVD

The next generation neutrino observatories

- Under construction since 2015
- Now: 3 clusters with 288 OMs each
- Phase-1 Baikal-GVD: 8 clusters, deployed by 2020-2021
- Goal: ~2 km³ with 10.000 OMs ~2030
- First muon neutrino and cascade events detected!

A.D. Avrorin et al., arXiv:1808.10353

TXS 0506+056 and IC-170922A

Interpretation: jet-sheath model

DESY.

- Jet-sheath model (Ghisellini G., Tavecchio F., Chiaberge M., 2005, A&A, 432, 401)
- Components: leptonic (synchrotron, SSC, EC) + hadronic (photo-meson casc., BH casc., synch. rad. from pi and mu)
- Day-scale variability \rightarrow Size of emitting region $\sim 10^{16}$ cm
- . Internal absorption: $\tau_{\rm end}$ (E ~ 100 GeV)~1 consistent with the observed spectral break

TXS 0506+056 and IC-170922A

Interpretation: jet-sheath model

- X-ray and VHE gamma-ray data set tight constraints on max. proton energy E_{p,max}
- Scan of $E_{p,max}$:10¹⁴-10¹⁸ eV (co-moving frame)
- \rightarrow TXS 0506+056 able to accelerate CR to UHE!

CR & v:WAXMANN BAHCALL BOUND

- Starting from the observed CRs with energies >10¹⁹ eV a limit was derived on the neutrinos produced within the same sources assuming:
 - I. Protons are accelerated at the sources with a power-law index 2
 - 2. All protons undergo photo-hadronic interactions giving neutrons, neutrinos and g-rays
 - 3. The sources are optically "thin" to neutrons, which escape and decay into protons giving the observed CRs
 - 4. The luminosity evolution of far away sources (whose CR we do not observe) is not stronger than any class we know
- Mannheim Protheroe and Rachen (MPR) showed that different CR spectra can considerably weaken the limit
- The observed flux is very close to WB limit: a coincidence or a deeper multimessenger connection?

$$E^2 \Phi < 3 \times 10^{-8} \,\mathrm{GeV \, s^{-1} \, sr^{-1} \, cm^{-2}}$$

46

- Two double cascade events have been identified
- In one of these two events, the observed light arrival time favours the double cascade hypothesis
- Double cascades can arise from atmospheric and astrophysical backgrounds
- Further study of the tauness of double cascade events is ongoing, as well as independent double pulse analyses
- Best fit flavour composition is 0.29:0.50:0.21 but zero tau cannot be excluded

DESY, | VHE nu astrophysics | Konstancja Satalecka, Bad Honeff 30.11.2018

Real-time MultiMessenger

First evidence for a neutrino source!

The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams. *Science* 361, eaat1378 (2018)

3σ correlation of IC-170922A (~300 TeV) with the blazar TXS 0506+056 flare

DESY. | VHE nu astrophysics | Konstancja Satalecka, Bad Honeff 30.11.2018

Fast MWL response over all EM spectrum!

Looking into IC past data: excess of HE neutrino events, between Sep 2014 and Mar 2015, from TXS 0506+056, another **3.5σ evidence**.

Galactic Plane

Join forces!

The ANTARES and IceCube Collaborations: Albert et al. <u>*The Astrophysical Journal Letters*</u> 868 (2018), <u>arxiv.org/abs/1808.03531</u>.

IceCube 7 yrs + ANTARES 9 yrs

- Galactic cosmic rays propagate in the interstellar medium producing γ-rays and neutrinos.
- Gamma-ray: increasing flux and spectral hardening at the Galactic ridge with increasing γ-ray energy
- Neutrinos: flux increasing with energy, follow γ -ray spatial pattern
- Combined UL in agreement with KRA model, preference for 5
 PeV CR spectrum cut-off
- Galactic contribution to IC astrophysical nu flux < 8.5%

Neutrinos: cosmic messengers

Hillas criterium (1984): $E_{max} \simeq 10^{18} eV Z \beta (R/kpc)(B/\mu G)$

The multi messenger approach

Highest energy particles observed on Earth: cosmic rays (protons nuclei from He up to Fe)

Cosmic messengers

Each of the messengers has its special qualities...

IceCube upgrade

DESY.

