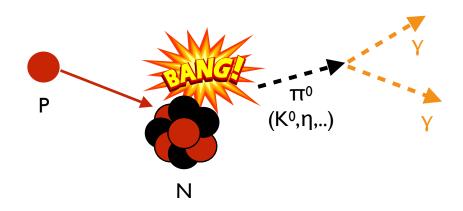


cherenkov telescope array

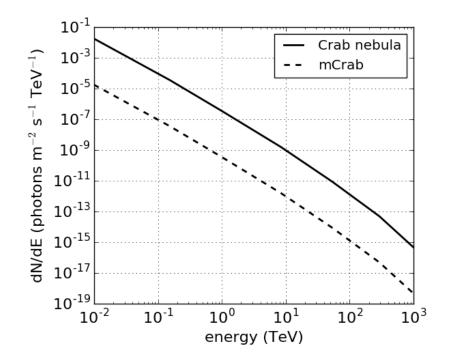
Introduction to the Cherenkov Telescope Array

The CTA Consortium* represented by Luigi Tibaldo, IRAP, Toulouse


luigi.tibaldo@irap.omp.eu http://userpages.irap.omp.eu/~ltibaldo

see http://www.cta-observatory.org/consortium_authors/authors_2019_06.html for for full author list

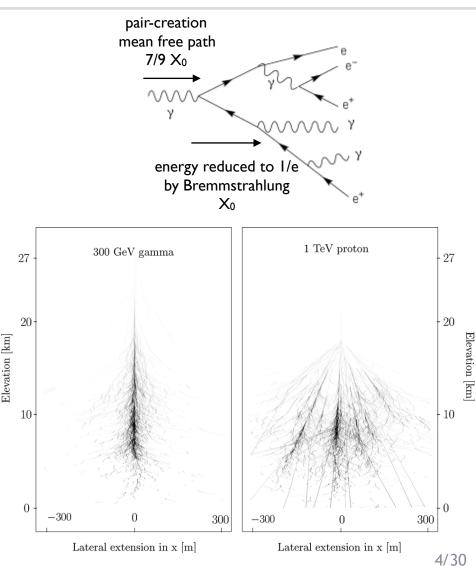
Inception: the quest for the sources of cosmic rays



- cosmic rays (CR)
 - relativistic particles up to 10²⁰ eV
 - mostly nuclei (H, He, ...)
 - sources still poorly known
 - deflected by magnetic fields
 → do not point to sources
- gamma rays from CR nuclei interactions with interstellar matter
 - through production of unstable particles that decay in gamma rays (lightest π⁰)
 - only observational tracer of highly relativistic nuclei

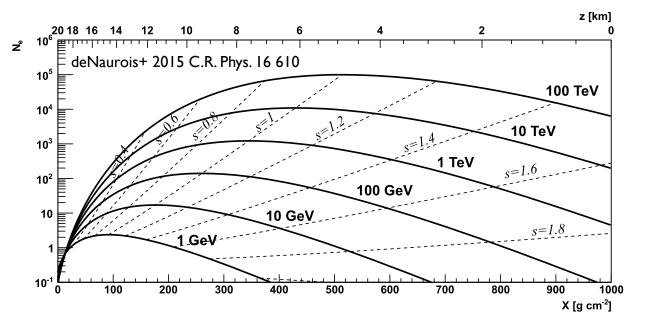
Why satellites don't make it to VHE

- size limitations due to space operations
 - calorimeter < 10 r.l., energy leakage → no good energy measurement
 - collection area < 1 m² → low count statistics
- need to reach PeV to prove CR acceleration in the Galaxy up to the knee (10¹⁵ eV)
- ground instruments more effective at very high energies (VHE) ≥ 100 GeV

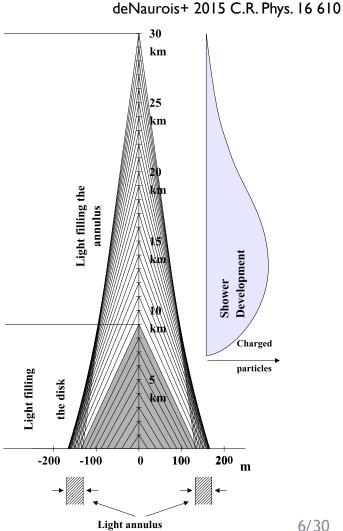


Atmospheric showers

- gamma rays produce electromagnetic showers
 - 1 e/gamma generates 2 with 1/2 energy over scale of radiation length
 - shower growth: 2^N e/gamma with 1/2^N energy after N r.I.
 - process stops when approaching electron critical energy O(100 MeV), ionisation prevails over Bremmstrahlung
- cosmic-ray nuclei also produce showers
 - hadronic interactions can transfer higher transversal momentum → wider/patchier profile

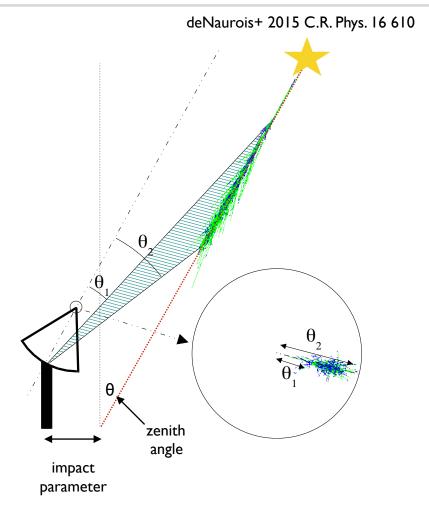

Aharonian+ 2008 R.P.Phys 71 096901

Atmospheric showers development

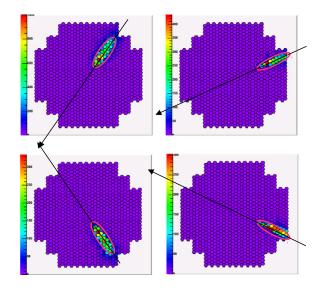

5/30

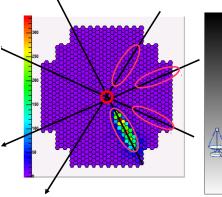
- the atmosphere has approximately an exponential density profile exp(-z/z_0) with $z_0 \sim 8 \ \text{km}$
- the radiation length in air is ~ 37 g cm⁻², the total depth at sea level is ~ 30 r.l.
- the shower maximum occurs at heights of 5 to 15 km (depending on energy)
- fluctuations in the em shower development are mainly due to fluctuations of first interaction depth
- shower opening
 - multiple Coulomb scattering causes a lateral opening of ~5°
 - Earth's magnetic field broadens the shower in the East-West direction

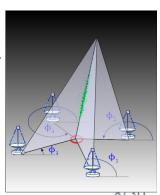
Cherenkov radiation


- ultrarelativistic electrons emit Cherenkov light at ٠ characteristic angle
- the Cherenkov light yield is approximately • proportional to primary energy
- refraction index depends on density, exponential ٠ variation with altitude \rightarrow angle varies from 0.2° at 30 km to 1.5° at sea level
 - rough focussing on 120-150 m ring
 - multiple Coulomb scattering creates exponential distribution of angles within $O(5^{\circ})$
- since electrons are superluminal photons duration ٠ of Cherenkov flash is short O(5 ns) on axis
- Cherenkov light is absorbed in the atmosphere ۲
 - Rayleigh scattering (small particles), absorption length $\rightarrow \lambda^4$
 - Mie scattering (large particles = aerosols), absorption length $\rightarrow \lambda$
 - Ozone photodissociation, absorbs UV
 - scattering by water vapour

The imaging Cherenkov technique


- elongated image pointing to source
- with increasing impact parameter
 - image more elongated
 - centroid farther from parallax
- with increasing energy
 - light amount increases
 - image length increases
- with increasing zenith angle
 - shower max distance increases as I_{max} = z_{max}/ cosθ
 - image width/length smaller by a factor cosθ
 - radius of light pool larger by 1/cosθ, thus light intensity smaller by cos²θ
 - consequences: effective area and energy threshold increase as 1/cos²θ
- increasing altitude reduces the distance to the shower max, so opposite effects


Imaging Cherenkov telescopes

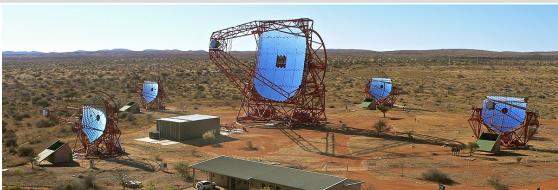


- basic constituents
 - wide-field optical telescope (shower width 5°) with resolution O(0.1°) (internal structure of shower)
 - fast camera with 100 to > 1000 pixels that records images on timescales O(5 ns) to discriminate showers from fluctuations of night-sky background
 - altitude-azimuth mount to track sources during long exposures
- arrays of imaging Cherenkov telescopes
 - multiple telescopes spaced by 50-100 m (at least 2 to 4 see same shower light pool)
 - stereoscopic reconstruction of shower arrival direction and impact position
 - better gamma/hadron separation
- working principle
 - trigger when multiple pixels (or sum of multiple pixels) exceed some threshold within time coincidence window
 - array coincidence trigger helps with background rejection
- observing modes:
 - pointing known/putative sources
 - surveys (still limited because small field of view)
- require dark and clear-sky conditions

deNaurois+ 2015 C.R. Phys. 16 610

IACT history in a nutshell

- 1953: Galbraith measures Cherenkov light from atmospheric showers
- 1960s-1980s: several experiments try to measure gamma rays using shower Cherenkov light, no solid detection of gammaray sources
- 1990s: IACT astronomy begins
 - 1989: the Whipple collaboration detects gamma rays from the Crab Nebula with single IACT, few more sources follow
 - from 1993: the HEGRA collaboration performs the first stereoscopic observations with an array of 5 IACTs
 - from 1997: the CAT collaboration demonstrates the advantage of finely pixelated cameras
- 2000s-2010s: current generation IACTs, the coming of age of VHE astronomy



Whipple Telescope 1968

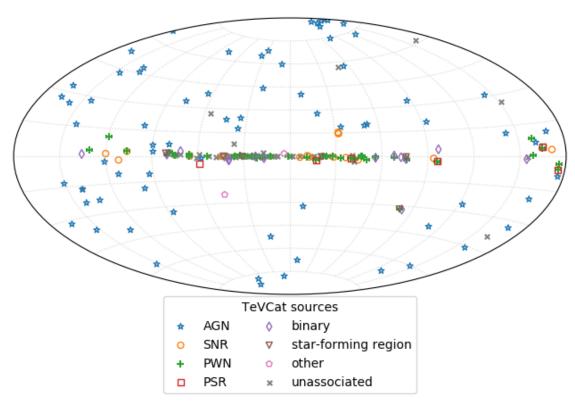
Current generation IACTs

H.E.S.S. Namibia 4 + 1 telescopes 12 m + 28 m

VERITAS Arizona 4 telescopes 10 m

MAGIC Canary Islands 2 telescopes 17 m

Astronomy with IACTs


shows a different facet of the Universe images and maps with resolution • close to human eye dynamic range of 3 orders of • magnitude in energy time-domain astronomy on scales •

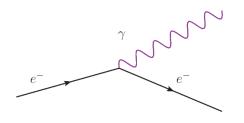
from minutes to years

The coming of age of VHE astronomy

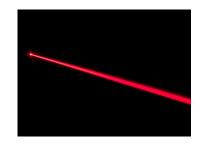
Sources detected by ground-based gamma-ray telescopes (TeVCat)

astounding variety of VHE emitters, attests to ubiquitous phenomena of extreme objects accelerating particles in the Universe

How a VHE gamma-ray is made


energy source

particle acceleration

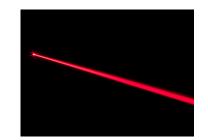

particle interaction/ gamma-ray production

gamma-ray propagation

A probe of nonthermal phenomena

energy source

particle acceleration

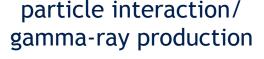

COR

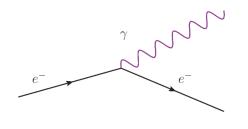
particle interaction/

gamma-ray propagation

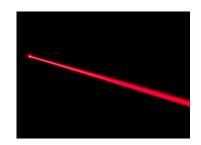
- cannot be produced by thermal processes:
 100 MeV → 2 x 10¹¹ K (Wien's law)
- no nuclear gamma-ray lines beyond 10 MeV
- only production mechanism: particle acceleration + radiative process

1 - Origin and role of relativistic cosmic particles




energy source

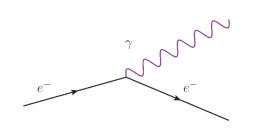
particle acceleration


COP

gamma-ray propagation

• **the original one**: what are the sites and mechanisms of cosmicray acceleration? what is the feedback of cosmic rays on starformation and galaxy evolution?

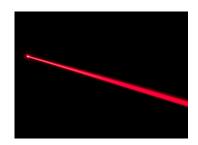
2 - Probing extreme environments



energy source

particle acceleration

C



particle interaction/

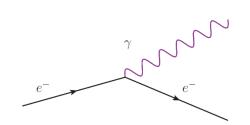
gamma-ray production

gamma-ray propagation

- what physical processes are at work close to neutron stars and black holes?
- what are the characteristics of relativistic jets, winds and explosions?
- what is the nature of gamma-ray bursts, the Fermi bubbles ... ?
- what are the electromagnetic counterparts to gravitational wave and neutrino sources?

 how intense are radiation/ magnetic fields in extragalactic space and how do they evolve over cosmic time?

3- Exploring frontiers in Physics



energy source

particle acceleration

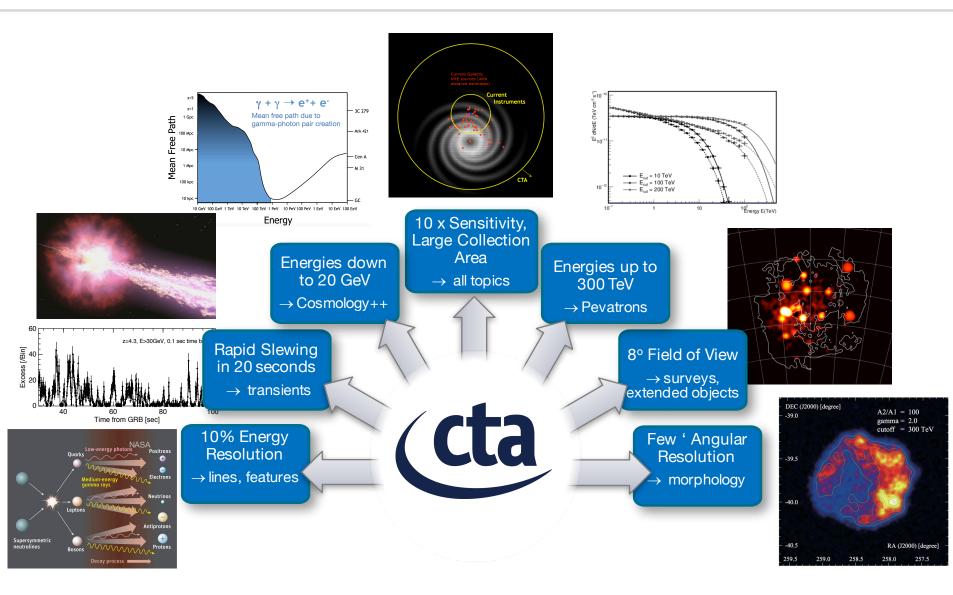
particle interaction/

gamma-ray production

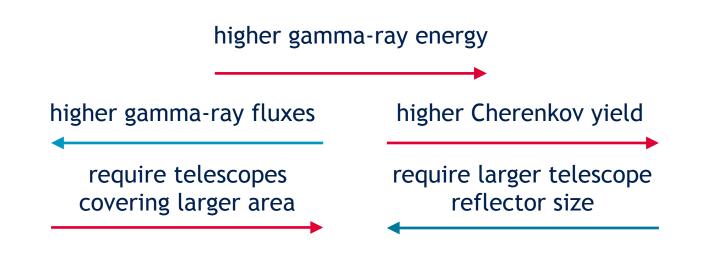
gamma-ray propagation

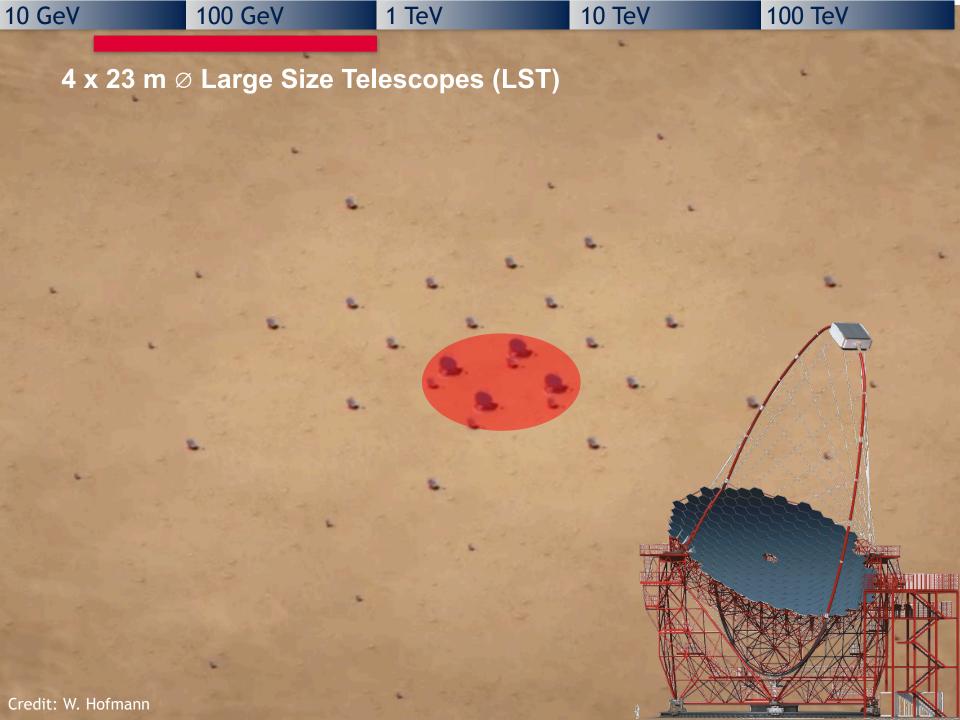
 what is the nature of dark matter and how is it distributed?

- are there quantum gravitational affects on photon propagation?
- do axion-like particles exist?


CTA: the concept

Credit: Werner Hofmann light-pool radius 100-150 m ~ telescope spacing sweet spot for trigger and reconstruction: most showers miss it large detection area more images per shower lower trigger threshold


Design drivers



A size for every energy

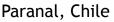
- at low energies Cherenkov yield is lower → require larger telescope reflector size
- at high energies gamma-ray fluxes are lower → require to cover larger ground area with telescopes
- need to find a cost-effective compromise to cover large energy range!

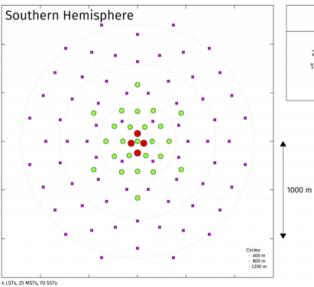
10	GeV	

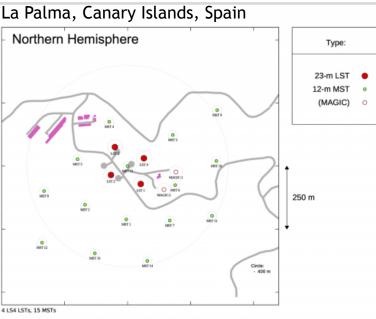
100 TeV

25 x 12 m Ø Medium Size Telescopes (MST) (North: 15)

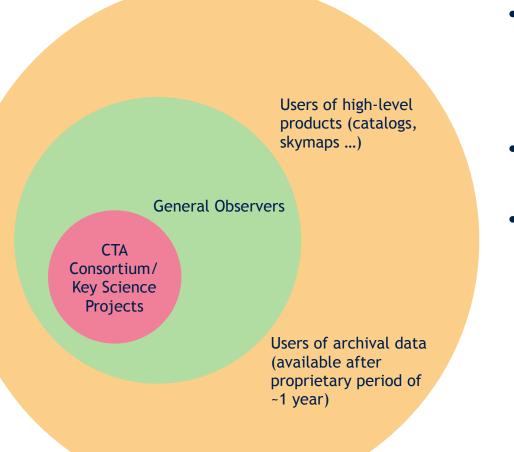
1 TeV


10 GeV	100 GeV	1 TeV	10 TeV	100 TeV
12000000000				
		70 x 4 m (South)	Ø Small Size Te	elescopes (SST)
		e. e.	•	
	•	· · · · · · · · · · · · · · · · · · ·	•	
			•	
Credit: W. Hofmann	and the second s	2 million and a start of the	Called Classes	


Sites and layout



 SSTs only in Southern hemisphere owing to easier access to Milky Way (extragalactic VHE gamma rays absorbed by EBL)


• exact layout chosen to optimise Science performance within environmental contraints (CTAC, 2019 Astropart. Phys 111, p. 35-53) 24/30

CTA: the first VHE observatory

- ~40% of observing time over first 10 years for Consortium Key Science Projects (KSPs)
- rest of the time open to general observers (GO)
- ultimately all data public
 (candidate photon lists with measured properties) +
 software tools to perform
 scientific analysis

The Key Science Projects



- provide major insight into one or more of the key scientific questions
- large observational programmes difficult to achieve for GO (e.g., surveys)
- require deep expertise with IACT technique/CTA instruments only available in CTAC
- provide early legacy datasets/ products to seed the GO programme

https://arxiv.org/abs/1709.07997 https://www.worldscientific.com/worldscibooks/10.1142/10986

CTA Key Science Projects

Multiwavelength/messenger synergies

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2125
	CTA I	Prototypes	\Rightarrow			Science V	erification =	⇒ User Ope	ration		
Low Free	uency Rad	dio									
LOFAI				•							
MWA	VLITE on J	IVI A		(upgrade) (~2018? LO	PO))					
				FAST	/B ()						{
	equency F	in, ATCA, EV		N VERA I	BA GBT (: many other sn	aller facilitie	;	:	:	
ASKA	P	, , ,	, ,		<i></i> , 0 <i></i> ()		i i				
Kat7	> MeerKAT	> SKA Phas	e 1								
	metre Rad						1&2 (Lo/Mid	:	:	:	
	· · · · · · · · · · · · · · · · · · ·	AT, IRAM, NO	DEMA, SMA	A, SMT, SPT	', Nanten2, Mo	opra, Nobeyai	na (many	other smaller	r facilities)		
(ALMA	EHT	(prototy	pe -> full o	ons)							
Ontion 7		actories/Tr	<u></u>								
	ar Transient) Zwicky TF	;			0.11			
	ARRS1 -> P) Zwicky II			T (buildup to	tull survey i	mode)	:	
		Blac	kGEM (Mee	erlicht single	dish prototy	be in 2016)					
	R Large Fa										
	eck, GTC, G	emini, Magella	an(many o	other smaller	r facilities)					(WFIRST
HST	:	:	:	:	JWST						GMT
X-ray							e	ELT (full ope	eration 2024)	& TMT (time	line less clear)?
	incl. UV/optic	cal)									
	& Chandra						IXPE	1			
INUSTA		ASTROSAT)	ATHENA (2028
	_		HXM		_						
) SITA		(XAI	RM			{
Gamma-i	av			Cino		:	SVOM (incl. soft gam	$\frac{1}{1}$ ma-ray + opt	tical ground e	lements)
	GRAL										
Fermi											
	HAWC	DAMPE)	:	:	Gamma400 (2025+)
Grav. Wa					LHAAS	0					
Giav. wa		ed LIGO + A	dvanced VII	RGO (2017)		(-upgrade f	o include LI	GO India —)	<u>!</u>	!	Einstein Tel.?
Neutrino					(KAG			,			
(Neutinos	9 [;	IceCul	e (SINCE 2	011)				:	:	:	[ceCube-Gen2?]=
ANTARE	S		(KM3NE			KM3NE	T-2 (ARCA)				KM3NET-3
UHE Cos	mic Rays										
		Telescope A		upgrade		·	·				, ,
	Pierre Auger Observatory ⇒ upgrade to Auger Prime										

29/30

- The imaging atmospheric Cherenkov technique represents a mature way to carry out observations of the VHE sky
- VHE observations give us fundamental insight on the nonthermal phenomena in the Universe
 - origin and role of relativistic cosmic particles
 - extreme environments
 - frontiers of Physics
- CTA is the next-generation VHE observatory
 - designed to explore the entire sky with unprecedented performance over largest ever energy range
 - rich and diverse Key Science Projects & open to the entire astronomy/astroparticle community