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❖ Spherical Picture (Einstein, Penrose, Thorn +)
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Spherical multipole
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This talk

Spherical multipole
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Spherical multipole This talk

Preface 
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Overview Towards a new multipolar description
A. Foundational concepts

❖ General Relativity and Gravitational waves 
❖ Black Hole Binaries, Observation & Signal Modeling
❖ Core Questions

B. Gravitational Wave Signal Models
❖ Review of the first higher multipole model, PhenomHM
❖ Missing physics (“Mode Mixing”)
❖ Ringdown-only model, RDNP
❖ Review & Questions

C. Towards a New Multipolar Description
❖ Review of motivation
❖ Basic methodology and sample results
❖ Pandora’s box & final comments
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Foundations Briefly on General 
Relativity and Gravitational Waves
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On the Implications of General Relativity
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❖ General Relativity is a mathematical tool for describing space and time in a way that 
allows different observers to agree on measurable quantities in space and/or time. 

❖ The “mixing” of space and time spurs the notion of “space-time”.
❖ Example: The “proper”, frame-invariant, path of a object moving between to locations 

has a length                              , where
❖ The metric,         , is a tool for describing the structure of space-time.     
❖ Special case: flat-space ds2 = �cdt2 + dx2 + dy2 + dz2 = ⌘µ⌫x

µx⌫

Relevant Foundations

Practical Implications
❖ Newtonian equations involving only spatial derivatives now involve ``space'' and 

``time'' derivatives. For example,                            becomes … 

❖ … Einstein’s Equations: 

❖ Einstein’s Equations support “wave equations” for         — Gravitational Waves

Rµ⌫ � 1

2
Rgµ⌫ =

8⇡G

c4
Tµ⌫
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On the Implications of General Relativity



Gravitational Wave Radiation
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❖ In general, metric solutions to Einstein’s Equations may be sought in the form

Gravitational Waves (GWs)

gµ⌫ = ⌘µ⌫ + hµ⌫

background metric “strain” due to e.g. a 
black hole binary (BBH)

❖ There are two polarizations:        and
❖ At a linear approximation, the strain satisfies a standard wave equation

hxx = h+hyy = h⇥

hyy = h⇥

hxx = h+

Gravitational Wave Radiation

⇤hµ⌫ =
8⇡

c4
GTµ⌫

❖ Far from an astrophysical source, we are concerned with the radiation solution
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Gravitational Wave Radiation
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Gravitational Wave Radiation
❖ Far from an astrophysical source, we are concerned with the radiation solution
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Spin-weighted Spherical Harmonics Multipole Moment



Gravitational Wave Radiation
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Gravitational Wave Radiation
❖ Far from an astrophysical source, we are concerned with the radiation solution
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Gravitational wave detectors such as Adv. LIGO observe a linear combination of the two 
GW polarizations. While the formal detection problem is highly non-trivial, it is vastly 
aided by prior knowledge of signal morphology. Thus GW signal models are a central 
effort in GW Astronomy. They enable the probing of many questions …

hResp
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Gravitational Wave Radiation
GW150914



 

Gravitational Wave Signal Models
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Core Questions & GW Signal Models
Signal models are our best interface between experimental data fundamental GW 
theory. They enable us to probe the key questions about BBH signal observations:
❖ What where the physical parameters of the source? It’s masses, spins?
❖ Is the signal consistent with the predictions of General Relativity?
In tandem, the process of developing GW signal models (e.g. from costly Numerical 

Relativity simulations) forces us to ask deeper theoretical questions:
❖ How well can we understand the parts of GW signals where analytic theory 

provides solutions? (i.e. early inspiral, and late post-merger)
❖ Can Numerical Relativity simulations guide the way to new physical insight? Can 

we analytically understand the non-linear merger?

The recent PhenomHM model is a prime example of how deeper theory questions 
may result in improved answers to observational ones (London, Khan et. al. 2018). 
But this is not without limitations. The Ringdown-only model, RDNP, addresses 
mode-mixing (London 2018).



PhenomHM Motivations
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❖ Signal models with higher multipoles (modes) are needed to confront:
❖ Biases in parameter estimation (Varma, others)
❖ Limited detectable volume for mass ratios greater than ~4 (Varma, 

Bustillo,Pekowsky, others)
❖ Higher multipoles are more important for:

❖ Unequal component masses (Capano, Healy,Varma, others)
❖ Moderate component spins (Varma, others)

PhenomHM is the first, and currently only GW signal model that:
❖ Applies to non-precessing Binary Black Hole (BBH) systems, and 

has higher multipoles
❖ And, is suitable for large regions of the BBH parameter space



PhenomHM Structure
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❖ Inspiral (where Post-Newtonian is valid)
❖ Multipole phases are related by a simple scaling 

❖ The Stationary-Phase-Approximation (SPA) allows this scaling to be 
applied to the frequency domain

❖ Merger-Ringdown (Perturbed Kerr)
❖ The Quasi-Normal Mode (QNM) spectrum provides relationships 

between the frequencies of different gravitational wave multipoles.

(Inspiral) (Merger-Ringdown)



PhenomHM Structure
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❖ Bridging the gap (inspiral—>merger—>ringdown)

❖ Quadrupole Mapping (h22 —> hlm)



PhenomHM Results
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m1/m2=4, dimensionless spin of +0.5 on each BH



PhenomHM Results
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m1/m2=4, dimensionless spin of +0.5 on each BH

40% decrease 
in uncertainty 



PhenomHM Limitations
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❖ PhenomHM does not model precession. (ongoing work)
❖ Improvement in agreement with numerical relativity, but no 

robust calibration. (ongoing work)
❖ PhenomHM does not account for known multipolar mixing or 

“mode-mixing” during ringdown.
❖ Mode-mixing: In the time domain, mode-mixing is well 

understood in perturbation theory to result from differences 
between spherical and spheroidal harmonics

❖ Few GW signal models account for mode mixing, most of these are 
ringdown-only models



PhenomHM Limitations
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Mode-mixing



!26

Aside: Mixing of Multipoles in NR Waveforms
Mode mixing understood in 
this regime for time-domain
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The Working Perspective
❖ Numerical Relativity, Post-Newtonian Theory, LIGO 

signal models …

❖ Spherical Harmonic multipole moments of spin weight -2

Black Hole Perturbation Theory
❖ Perturbations of Kerr metric (spinning BHs)

❖ Linearized gravity = Teukolsky’s Equations 

❖ Analytically well understood:
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r
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(Pistorius, Baker, Damour, many others)

the multipole moments
Ringdown

BBH Ringdown Mode-Mixing 



Combining the two perspectives to understand “mode-mixing”

❖ Numerical Relativity: Spherical Harmonic Multipoles,                 (Orthogonal in l)

❖ a

❖ b

rh = r(h+ � ih⇥) =
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❖ Perturbation Theory: Spheroidal Harmonic Multipoles,                (Not orthogonal in l)

❖ a

❖ b
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The Spherical multipoles of NR 
are sums of QNMs 
                   — i.e. “mode mixing”
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BBH Ringdown Mode-Mixing 



The result of these two different perspectives is obscured physics. Figure: 
NR ringdown waveform for (l,m)=(3,2), equal mass, initially non-spinning.

The mixing of QNMs due to use of a spherical basis causes “beating”, while a 
simple decaying sinusoid might naively be expected. This effect complicates the 
time domain modeling of post-merger higher multipoles.

!29

BBH Ringdown Mode-Mixing 
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Clashing Perspectives
❖ Post-Newtonian theory and other modeling paradigms 

primarily use spherical harmonics, while the natural 
perspective of perturbation theory is to use spheroidal 
harmonics

❖ Most GW signal models do not incorporate 
spheroidal harmonic information

Ringdown

Learning from the Spheroidal Perspective

❖ Ringdown-only signal models are useful for 
testing GR

❖ Example model: RDNP

(Carullo, Kelly, Kamaretsos, London+)

(London+ 2014/2018)

BBH Ringdown Mode-Mixing 



❖ Model Overview

RDNP: A QNM Signal Model for NonPrecessing Systems
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Spherical-Spheroidal Inner-product

Quasinormal mode amplitudes,            , are modeled 
over initial binary parameters: masses, spins
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RDNP: A QNM Signal Model for NonPrecessing Systems
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Sample Amplitudes
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❖ Enables quantification of GR 
predictions for current and future 
detections

❖ e.g. GW150914 likely had a 
ringdown SNR of about 6.4

❖ About 1.6 of this SNR can be 
attributed to the presence of 
more than 1 QNM

❖ This SNR ~1 effect suggests that 
events like GW150914 can be of 
cumulative use for testing GR.

Sample Application: GR predictions for GW150914



Core Questions
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Can a change in perspective enable an advance in 
physical understanding?

For gravitational waves (GWs) and black hole 
binaries (BBHs), can we better understand:
❖ The GR manifold of solutions for experimental 

tests?
❖ The imprint of source properties on GW signals?

For BBH Ringdown: Yes



Let’s Review & Ask Questions
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Gravitational Waves
❖ Typically represented as ripples atop a Minkowski (“flat”) 

background metric:
❖ This approach leads to (at low order) a spherical harmonic 

representation of the radiation: 

gµ⌫ = ⌘µ⌫ + hµ⌫

rh = r(h+ � ih⇥) =
X

l,m

hNR
lm �2Ylm(✓,�)

hNR
lm =

Z

⌦
rh�2Ȳlmd⌦

Signal Models
❖ Most GW Inspirl-Merger-Ringdown models to date use the spherical 

harmonic representation 
Mode-Mixing in Merger-Ringdown
❖ BH perturbation theory describes the spheroidal harmonics as the 

natural basis for time domain ringdown



Let’s Review & Ask Questions
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Mode-Mixing in Merger-Ringdown
❖ BH perturbation theory describes the spheroidal harmonics as the 

natural basis for time domain ringdown. 
❖ The spherical harmonics are only the natural  basis when there is no 

angular momentum in the space-time.

Primary Question
❖ Is there a natural (dynamical) multipolar basis for GWs from 

BBHs?



 

Towards a New Multipolar 
Description
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Towards the use of Spheroidal Harmonics 
to describe GWs from BBH coalescence

!38



Spheroidal Picture Motivations 
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Insight from Misner-Thorne-Wheeler (MTW)
❖ Chapter 19 (second page) — far away from a general astrophysical 

source, and neglecting self-gravity, the metric is determined by the 
source’s mass, and it’s angular momentum.

❖ This is consistent with the Kerr metric in the large r limit.

This (+other) suggests that Kerr may be a more appropriate 
background metric far from the source 
❖ This is definitely true for time domain ringdown, and must 

generalize to merger and inspiral in a continuous way.
❖ But how? MTW, as well as work in general azimuthally symmetric 

spacetimes suggest that large-r-Kerr is the appropriate metric.



Briefly on Spheroidal Harmonics 
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Definition
❖ Spheroidal harmonics are the angular eigenfunctions of Einstein’s 

Equations at linear order, when Kerr is used as the background
❖ They are functions of the usual spherical polar angles, as well as the 

source’s intrinsic frequency & angular momentum (a=J/M^2) 
Leaver 1986 (An analytic representation for quasi-normal modes of Kerr black 
holes )

A Basic Question
❖ Can one calculate        for all of inspiral-merger and ringdown?
❖ Note that here,      is complex (the image part is related to damping)

u = cos(✓) ,



Calculating system spin (a) and frequency 
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A Basic Question
❖ Can one calculate        for all of inspiral-merger and ringdown?
❖ Note that here,      is complex! (the image part is related to damping)

Spin & Mode Frequency (using NR simulation data)
❖ The spin (total angular momentum) and mode frequency of the 

system can be calculated either from the waveforms, or (in inspiral) 
from Post-Newtonian

❖ During inspiral, the total angular momentum is proportional to 
r^(1/2) 

❖ Towards inspiral, the real part of         —> Complex Infinity 
❖ Frequencies,    , are determined by spacetime boundary conditions



Spheroidal IMR Method Overview 
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Low Level Goal
❖ Given an NR simulation, use the given spherical harmonic multipole 

moments to estimate the spheroidal ones

Outline of Method
❖ Use Numerical Relativity data to estimate the system frequency (per 

mode) and total angular momentum.
❖ Input these parameters into Leaver’s analytic representation for the 

spheroidal harmonics — a set of coupled transcendental equations 
must be solved

❖ Use solutions to the aforementioned equations to calculate 
dynamical spheroidal functions and related moments. 
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Spheroidal Picture Example Angular Momentum 
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Spheroidal Picture System Frequencies 

Space-time “natural frequency”

GW frequency ~ Dynamics Orbital Frequency
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Spheroidal multipole

Spherical multipole

New Inspiral Behavior

Spheroidal Picture Example End Result 
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Spheroidal multipole

Spherical multipole
Low Order PN

New Inspiral Behavior

Spheroidal Picture EMRI Example 
New Inspiral Behavior



Concluding remarks & Pandora’s Box
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Review
There is a long history of viewing GWs as propagating atop a flat 
background metric; however, this is not likely the most appropriate 
perspective for BBH systems. A high-level method for a spheroidal 
harmonic picture has been presented. A publication is in prep.
Unexpected Consequences (Pandora’s Box)
❖ Time varying “QNM” frequency
❖ A generalization of Carter’s constant
❖ A new, low-level PN might be developed
❖ Open mathematical problem related to 

Spheroidal Harmonics
❖ Cleanest for EMRI cases



Core Questions

!48

Can a change in perspective enable an advance in 
physical understanding?

For gravitational waves (GWs) and black hole 
binaries (BBHs), can we better understand:
❖ The GR manifold of solutions for experimental 

tests?
❖ The imprint of source properties on GW signals?

For BBH Coalescence: Perhaps Yes
(Paper in preparation)
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