

<u>I. Garzia</u>, S. Spataro, L.L. Wang, P. Weidenkaff (on behalf of CGEM-software group)

IRC meeting - July 15, 2019

Outline

Introduction

- software milestones and status
- Implementation of the CGEM-IT in the BESIII software
- Calibration and alignment
- Releases, tests and conclusions

software overview

Cgem BESIII Offline Software System (CgemBoss)

OFFICIAL RELEASE (April 2017):

- CgemBoss v. 665b developed for benchmark channel studies
- CGEM+ODC segment matching INTERNAL RELASE (July 2018):
- Test Release: **CgemBoss v. 665c** developed to test and debug the Hough tracking code

CGEM software milestones

• Understand triple-GEMs behavior using test beam data

- Detector simulation of planar setup (digitization): comparison of simulated and experimental results
- Resolution optimization, merging between CC and μ TPC methods

• Implementation of the CGEM-IT in the BESIII software

- Full geometry (including also passive elements)
- Full digitization
- Global reconstruction (CGEM cluster and ODC hit combination)
- Alignment and calibration
- Event display
- • •

. . .

Check physics performances

• Single track and multi track event simulation, benchmark physics channel,

CGEM software milestones

Understand triple-GEMs behavior using test beam data Milestones

Detector simulation of planar setup (digitization): comparison of simulated stores and experimental results

Resolution optimization, merging between CC and µTPC methods

Implementation of the CGEM-IT in the BESIII software

- Full geometry (including also passive elements)
- Full digitization
- Global reconstruction (CGEM cluster and ODC hit combination)
- Alignment and calibration
- Event display

. . .

Milestones

Check physics performances

• Single track and multi track event simulation, benchmark physics channel,

Milestone 5: digitization for the test beam setup

• Planar GEM instrumented with APV25

R. Farinelli, L. Lavezzi

- Data from test beam (April 2018)
- B = 1T

Agreement within 30% as required by IRC milestone #5

Milestone 5: digitization for the test beam setup

• Planar GEM instrumented with APV25

R. Farinelli, L. Lavezzi

- Data from test beam (April 2018)
- B = 1T

Agreement within 30% as required by IRC milestone #5

Milestone 4: CC and µTPC merging algorithm

$$x_{\text{merge}} = \frac{x_{cc} \cdot w_{cc} + x_{\mu t p c} \cdot w_{\mu t p c}}{w_{cc} + w_{\mu t p c}}$$

- CC and μ TPC must be combined
- Iterative combination of cluster size weighting and incident angle weighting in order to achieve the expected resolution

- Resolution < 140 μm
- Efficiency between 95%-98%

<u>R. Farinelli</u>

Milestone 4: CC and µTPC merging algorithm

Resolution < 140 μm ٠

•

Efficiency between 95%-98% •

Cluster reconstruction with Machine Learning

Implementation of CGEM-IT in the BESIII software

R. Farinelli, L. Lavezzi, N.N. Miao, L.H. Wu, J.Y. Zhao, L.L. Wang

Geant4 description of CGEM

✓ CGEM-IT (sensitive part)

✓ passive elements

- ✓ Inner barrel of Outer-Drift-Chamber
- ✓ CGEM geometry service package (CgemGeomSvc)
 - manage geometry parameters
 - provide geometry information and calculation
 - Same for simulation, reconstruction, calibration, and aligned

Updates in geometry (passive part)

- ✓ Simplified Geometry (Michele)
- ✓ Implementation in Geant4 (Lia)
- ✓ Cables (recent update) New
 - Types: HV/LV/signal
 - Density measured (Ilaria)
 - Average density set in free volumes to considering cables

east #cables				west #cables			
from each layer				from each layer			
	n L1	n L2	n L3		n L1	n L2	n L3
HV	6	12	12	HV	7	14	14
LV	8	14	18	LV	8	14	18
signal	8	18	18	signal	8	14	18

The passive element geometry is completed and available now

Implementation of CGEM-IT in the BESIII software

<u>R. Farinelli, L. Lavezzi, N.N. Miao, L.H. Wu, J.Y. Zhao, L.L. Wang</u>

Full digitization implementation in CgemBoss almost complete

Digitization

R. Farinelli, L. Lavezzi, N.N. Miao, L.H. Wu, J.Y. Zhao, L.L. Wang

(*) subclass InductionGTS by Lia ready soon

Digitization: Induction

- Induction with 2D weighting field
 - ANSYS/Elmer (primary/secondary ionization)
 - Garfield++ (sampling model for drift, diffusion and multiplication)
 - updated with current strip design

- Digitization process validated by comparing the deposit energy in Geant4 and Garfield
- Cluster size from beam test data is bigger than the cluster size from digitization algorithm: tuning with CGEM data needed
- Readout electronic (sum and signal conversion) <u>*TIGER*</u>: <u>work in progress</u>

Reconstruction

- <u>CemBoss665b:</u> Segment finder in Cgem and ODC + matching
 - Low efficiency for low track momenta
- <u>CgemBoss665c:</u>
 - Global track finding: Hough transform v.12 (Cgem clusters + ODC hits)
 - Global track fitting: least square method
- <u>Next CgemBoss release</u>: updated Hough packages

CGEM+ODC reconstruction

Global Reconstruction: Improvements

Global track finding with Hough transform for CGEM+ODC

Basic procedure

Global circle finding

 ✓ Optimal binning of ρ−β map as a function of p_T investigated & implemented

 ✓ X-view hit association windows as a function of p_T investigated & implemented

V-view hits association

Calibration and Alignment

Calibration

- Framework ready
- Real data needed to complete and test the package

Alignment

Aiqiang Guo, Jingyi Zhao, Hongpeng Wang, Tong Sun, Kang Zhao, Linghui Wu, Liangliang Wang, Ryan Mitchell, Xi'an Xiong

Aim: correct the relative displacement (ODC as reference)

- among the different CGEM layers
- between CGEM and ODC
- consider rotations, translations, concentricity

- 6 parameters for each CGEM layer
- Two methods:
 - 1. Residual fit: suitable for large displacement
 - 2. Millepede matrix method: for refinement

$$\begin{split} \chi^{2} &= \sum_{data \ sets} \left(\sum_{events} \left(\sum_{tracks} \left(\sum_{hits} \frac{\Delta_{i}^{2}}{\sigma_{i}^{2}} \right) \right) \right); \\ \Delta &= u_{measurement} - u_{prediction}(q_{track}, p_{alignment}) \end{split}$$

- Validation of alignment package:
 - cosmic ray events (single muon, no B field) with mis-aligned geometry

Releases and code tests

Benchmark physics channel

Single tracks (e, m, p, K) (Isabella Garzia, Zhen Huang, L.L. Wang) $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$ (Zhen Huang, L.L. Wang) $e^+e^- \rightarrow p\bar{p}$ (Christoph Rosner) $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$ (Yasemin Schelhaas) $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ (Andreas Pitka) $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ (Viktor Thorén) $D^0 \rightarrow K^0_S K^- K^+$ (Peter Weidenkaff)

- Studies completed in CgemBoss665b
 - first workable version
 - Simulation:
 - Detector sensitive part only
 - basic digitization
 - Reconstruction
 - charge centroid
 - CGEM track segment reco
 - Recursive track fitting with Kalman filter method
- Check performances in CgemBoss665c test release
 - Hough transform
 - Global track fitting with least square method

Test release improvements

Z. Huang, Y. Zhang, LL. Wang

• <u>CgemBoss665c</u>: strong improvement in the efficiency for single track simulation

Beam Background simulation

Simulate additional (random) background clusters Probability of background clusters per event • **P** = (*background rate*) × (*time window*) 1-2 additional clusters on the first layer Simulation: $e^+e^- \rightarrow n(\pi^{\pm})$ $n = \{1, \dots, 6\} \text{ (a) } \sqrt{s} = 4.6 \text{ GeV}$ same momentum distribution: Transversal momentum 1 tracks 2 tracks 2000 3 tracks 4 tracks 5 tracks 1500 6 tracks entries 1000 500 0.0 0.5 1.5 2.0 1.0 pt [GeV/c]

New algorithm implemented: CgemBeamBkg

- Tested on CgemBoss665c
- Negligible effect in most cases

by Peter Weidenkaff

Event display

- Milestones 4 and 5 accomplished successfully
- Milestone 6 not yet finished but ready to be completed
- Implementation of the CGEM-IT in the BESIII software
 - Debug studies
 - New release will be ready soon
 - Check physics performances
- Calibration and alignment packages ready
- Software for cosmic ray data ready

Thanks for your allention

spares

Full Digitization

By Lia Lavezzi, Riccardo Farinelli, Nannan Miao, Linghui Wu, Liangliang Wang

Final Digitazione model following the physics processes in CGEM is ongoing:

- reproduce the CGEM performances
- based on the results from separate simulation of different parts of CGEM with Garfield++
 in order to reduce the time consuming

Beam Background simulation (I)

by Peter Weidenkaff

- Simulate additional (random) background clusters
- Probability of background clusters per event
 - **P** = (*background rate*) × (*time window*)
- Beam background rate per layer:
 - from CDR
 - based on beam background estimate with MDC
 - *Nominal* (1th layer): 9.5 kHz/x-strip
 - *Conservative* (1th layer): 60 kHz/x-strip
- Time window:
 - Time resolution of Cgem
 - Intrinsic time spread of primary ionization
 - *<u>Nominal</u>*: 210 ns
 - <u>Conservative</u>: 300 ns

Beam background rate estimate

From Giulio's studies:

1-2 additional clusters on the first layer

Data analysis for cosmic ray test

By Linghui

3

Data from Cosmic ray test can be used to study calibration and alignment