

Two-proton transfer reactions in the 180+40Ca and 20Ne+116Cd collisions

Jonas L. Ferreira

Institute of Physics Federal Fluminense University jonasleonardo@id.uff.br

APERJ

Main Goals

Two-particle transfer is a very good tool to study the correlations of both transferred particles in the transfer reaction.

✓ Sequential and direct mechanisms are involved.
 ¹⁸O+^{12,13}C, ¹⁸O+¹⁶O, ¹⁸O+²⁸Si, ¹⁸O+⁶⁴Ni

Transfer reactions can be a contaminant in collisions where double charge Exchange cross sections are measured.

Theoretical models and main ingredients

$$\phi_{I_a}(\xi_a) = \sum A_{j_1 j_2 j_{12}}^{j_{12} I_b I_a} \left[\phi_{I_b}(\xi_b) \times \left[\varphi_{j_1}(\mathbf{r}_1) \times \varphi_{j_2}(\mathbf{r}_2) \right]_{j_{12}} \right]_{I_A}$$

- ✓ Fresco code I. Thompson;
- ✓ DWBA, CCBA and CRC calculations;
- Woods-Saxon potential are used to generate the single-particle wave functions;
- ✓ São Paulo potential is used in each partition;
- ✓ Spectroscopic amplitudes

 $T_{\alpha\beta}^{seq} = \sum_{\gamma} \langle \psi_{\beta}^{(-)} | W_{\gamma} | \phi_{\gamma} \rangle \tilde{G}_{\gamma}^{(+)} \langle \phi_{\gamma} | W_{\alpha} | \psi_{\alpha}^{(+)} \rangle - \langle \psi_{\beta}^{(-)} | \phi_{\gamma} \rangle \langle \phi_{\gamma} | W_{\alpha} | \psi_{\alpha}^{(+)} \rangle$

$$\phi_a\left(\xi_a\right) = \sum_{lsj} A_{lsj}^{jI_bI_a} \left[\phi_{I_b}(\xi_b) \times \varphi_{lsj}(\boldsymbol{r})\right]_{I_a}$$

 $T_{\alpha\beta}^{Direct} = \langle \psi_{\beta}^{(-)} | W_{\alpha} | \psi_{\alpha}^{(+)} \rangle$

Theoretical models and main ingredients

São Paulo Potential

L. C. Chamon, et al. Phys. Rev. Lett. 79, 5218 (1997)

L. C. Chamon, et al. Phys. Rev. C. 66, 014610 (2002)

 \succ U(R) = (1.0 + 0.78*i*)V^{SP}_{LE}(R) intermediate and final partition L. R. Gasques, et. al., Nucl. Phys. A 764, 135 (2006)

$$V_{LE}^{SP} = V_F(\boldsymbol{R})e^{4v^2/c^2}$$

 $V_F = \int \rho_1(r_1) \mathcal{V}(R - r_1 + r_2) \rho_2(r_2) dr_1 dr_2$

 $\mathcal{V}(\mathbf{R} - \mathbf{r}_1 + \mathbf{r}_2)$ is the known nucleon – nucleon M3Y interaction

$$\rho(r) = \frac{\rho_0}{1 + e^{(r - R_0)/a}} \qquad \qquad R_0 = (1.31A^{1/3} - 0.84) fm$$
$$a = 0.56 fm$$

2p-transfer stripping reaction in the 20Ne+116Cd collision at 306 MeV

Structure calculation

- Shell Model
- Ligther nuclei
- ✓ Interaction: p-sd-mod (4He as core)
- ✓ Y. Utsuno and S. Chiba, Phys. Rev. C 83, 021301(R) (2001)
- Heavy nuclei
- ✓ Interaction: jj45pna
- ✓ R. Machleidt, Phys. Rev. C 63, 024001 (2001).

✓ Model Space

protons – 1f5/2, 2p3/2, 2p1/2 e 1g9/2 neutrons – 1g7/2, 2d5/2, 2d3/2, 3s1/2 e 1h11/2 78Ni as core

- ✓ Interaction: 88Sr45
- L. Coraggio, A. Gargano, and N. Itaco, Phys. Rev. C 93, 064328 (2016)

✓ Model Space

protons – 2p1/2, 1g9/2, 1g7/2 e 2d5/2 neutrons – 1g7/2, 2d5/2, 2d3/2, 3s1/2 e 1h11/2 88Sr as core

2p-transfer stripping reaction in the 20Ne+116Cd collision at 306 MeV

¹¹⁶Cd(²⁰Ne,¹⁸O)¹¹⁸Sn

2p-transfer stripping reaction in the 20Ne+116Cd collision at 306 MeV

			jj45	pna		88	Sr45
Final channel	Exp.	IC-1 (nb)	Seq-1 (nb)	IC-2 (nb)	Seq-2 (nb)	IC-2 (nb)	Seq-2 (nb)
${}^{18}O_{gs}(0^+) + {}^{118}Sn_{gs}(0^+)$	40 <u>+</u> 15	22	19.1	30.9	52.1	39.5	88.5
${}^{18}O_{gs}(0^+) + {}^{118}Sn_{1.229}(2^+)$	140 ± 60	5.3	1.6	26.9	39.8	52.7	106.3

- D. Carbone et al., Phys. Rev C 102, 044606 (2020)
- IC-1 e Seq-1 no couplings with inelastic states in the initial partition.

2n-transfer pickup reaction in the 20Ne+116Cd collision at 306 MeV

¹¹⁶Cd(²⁰Ne,²²Ne)¹¹⁴Cd

> D. Carbone et al., Phys. Rev C 102, 044606 (2020)

2n-transfer pickup reaction in the 20Ne+116Cd collision at 306 MeV

Final channel	Exp.	IC-1 (nb)	Seq-1 (nb)	IC-2 (nb)	Seq-2 (nb)
$^{20}Ne_{gs}(0^+) + {}^{114}Cd_{gs}(0^+)$	370 <u>+</u> 190	251	613	209	427
$^{20}Ne_{gs}(0^+) + {}^{114}Cd_{0.558}(2^+)$	420 <u>+</u> 190	313	721	314	636

- D. Carbone et al., Phys. Rev C 102, 044606 (2020)
- IC-1 e Seq-1 no couplings with inelastic states in the initial partition.

Spectroscopic amplitudes for the target overlaps

□ Shell Model calculations – NuShellX

Efective interaction: ZBMmod
E. Caurier *et al.*, Phys. Lett. B 522, 240 (2001).
M. L. Bissell, et al., Phys. Rev. Lett. 113, 052502 (2014).

Model Space for both protons and neutrons

2s1/2, 1d3/2, 1f7/2 and 2p3/2

28Si as core

Spectroscopic amplitudes for the proj. overlaps

Efective interaction: ZBM
A. P. Zuker, B. Buck, and J. B. McGrory, Phys. Rev. Lett. 21, 39 (1968).

Model Space for both protons and neutrons

1p1/2, 1d5/2 and 2s1/2

12C as core

Spectroscopic amplitudes for the target overlaps

□ Shell Model calculations – NuShellX

Efective interaction: ZBMmod
E. Caurier *et al.*, Phys. Lett. B 522, 240 (2001).
M. L. Bissell, et al., Phys. Rev. Lett. 113, 052502 (2014).

Model Space for both protons and neutrons

2s1/2, 1d3/2, 1f7/2 and 2p3/2

28Si as core

Spectroscopic amplitudes for the proj. overlaps

Efective interaction: ZBM
 A. P. Zuker, B. Buck, and J. B. McGrory, Phys. Rev. Lett. 21, 39 (1968).

> Model Space for both protons and neutrons

1p1/2, 1d5/2 and 2s1/2

12C as core

J. L. Ferreira et al., Phys. Rev C 103, 054604 (2021)

Conclusions and outlooks

- Direct and sequential two-proton transfer mechanisms compete with each other populating the ground states of both 20Ne+38Ar and 18O+118Sn in final partition.
- > The first 2+ excited states in the final partition are preferably populated by sequential mechanism.
- > Couplings with inelastic states are important to be taken into account in the initial partition.
- The orbits above the 1g9/2 (proton model space) play a relevant role in the transfer reaction for the 20Ne+116Cd collision.
- Next step is to analyse two-proton transfer in the 76Ge(20Ne, 180)78Se and the multinuceon transfer reaction in the 40Ca(180,18Ne)40Ar

Working group

NUMEN collaboration

F. Cappuzzello^{1,2,a}, C. Agodi², M. Cavallaro², D. Carbone², S. Tudisco², D. Lo Presti^{1,3}, J.R.B. Oliveira⁴,
P. Finocchiaro², M. Colonna², D. Rifuggiato², L. Calabretta², D. Calvo⁵, L. Pandola², L. Acosta⁶, N. Auerbach⁷,
J. Bellone^{1,2}, R. Bijker⁸, D. Bonanno³, D. Bongiovanni², T. Borello-Lewin⁴, I. Boztosun⁹, O. Brunasso⁵,
S. Burrello^{2,10}, S. Calabrese^{1,2}, A. Calanna², E.R. Chávez Lomeli⁶, G. D'Agostino^{1,2}, P.N. De Faria¹¹,
G. De Geronimo¹², F. Delaunay^{5,13}, N. Deshmukh², J.L. Ferreira¹¹, M. Fisichella⁵, A. Foti³, G. Gallo^{1,2},
H. Garcia-Tecocoatzi^{14,25}, V. Greco^{1,2}, A. Hacisalihoglu^{2,15}, F. Iazzi^{5,16}, R. Introzzi^{5,16}, G. Lanzalone^{2,17}, J.A. Lay^{2,10}, F. La Via¹⁸, H. Lenske¹⁹, R. Linares¹¹, G. Litrico², F. Longhitano³, J. Lubian¹¹, N.H. Medina⁴, D.R. Mendes¹¹, M. Moralles²⁰, A. Muoio², A. Pakou²¹, H. Petrascu²², F. Pinna^{5,16}, S. Reito³, A.D. Russo², G. Russo^{1,3},
G. Santagati², E. Santopinto¹⁴, R.B.B. Santos²³, O. Sgouros^{2,21}, M.A.G. da Silveira²³, S.O. Solakci⁹, G. Souliotis²⁴,
V. Soukeras^{2,21}, A. Spatafora^{1,2}, D. Torresi², R. Magana Vsevolodovna^{14,25}, A. Yildirim⁹, and V.A.B. Zagatto¹¹

Thank you!

NUMEN Colaboration

J. Lubian, E. N. Cardozo, M. Ermamatov, D. Mendes Jr., R. Linares, B. Paes, V. Zagatto. *Instituto de Fisica, Universidade Federal Fluminense, Niterói, RJ, Brazil*

F. Cappuzzello, C. Agodi, D. Carbone, M. Cavallaro and their group at LNS of Catania

Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Italy Istituto Nazionale di Fisica Nucleare – Sezione di Catania, Italy

A. Gargano Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, Italy

E. Santopinto, R. Magana Istituto Nazionale di Fisica Nucleare – Sezione di Genova, Italy

J. Zamora INCL- Michigan State Univ., USA

TABLE IV. Integrated cross sections in the angular range of $0^{\circ} \leq \theta_{c.m.} \leq 12^{\circ}$ for each channel that might contribute to the experimental cross section calculated by direct (IC) and sequential (Seq) mechanisms (see the text). For the fourth peak the cross sections obtained by the ZBM2-modified and *vpth* interactions are listed.

Channels correspondin	g to the third peak [[Fig. 3(a)]			
	Theoretical cross sections (n				
Final channel	Direct (IC)	Seq			
20 Ne _{es} (0 ⁺) + 38 Ar _{3.38} (0 ⁺)	4.85	6.77			
$^{20}Ne_{8.8}(0^+) + {}^{38}Ar_{3.81}(3^-)$	24.11	29.37			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{3.94}(2^+)$	260.26	317.78			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{4.57}(2^+)$	605.31	694.32			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{4.59}(5^-)$	4.81	9.37			
20 Ne _{1.63} (2 ⁺) + 38 Ar _{2.17} (2 ⁺)	122.60	399.85			
$^{20}Ne_{4.25}(4^+) + {}^{38}Ar_{g.s.}(0^+)$	146.90	228.53			
Channels corresponding	to the fourth neak	(Fig. 3(b))			

	Theoretical cross sections (nb)						
	ZBM	2mod	vļ	nt h			
Final channel	IC	Seq.	IC	Seq.			
20 Ne _{g.s.} (0 ⁺) + 38 Ar _{5.60} (2 ⁺)	171.49	614.25	3.09	1.19			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{5.66}(5^-)$	126.54	438.29	44.81	143.44			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{5.83}(3^-)$	71.34	262.76	6.10	12.53			
$^{20}Ne_{8.8.}(0^+) + {}^{38}Ar_{6.05}(4^+)$	0.65	0.88	0.0082	0.11			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{6.25}(2^+)$	81.33	242.65	3.95	6.95			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{6.28}(4^+)$	0.28	0.29	0.0402	0.0414			
$^{20}Ne_{8.8}(0^+) + {}^{38}Ar_{6.41}(6^+)$	0.20	2.20	0.0439	0.0032			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{6.52}(2^+)$	115.17	391.42	1.74	0.27			
$^{20}Ne_{g.s.}(0^+) + {}^{38}Ar_{6.67}(5^-)$	0.21	4.92	3.51	1.32			
$^{20}Ne_{1.63}(2^+) + {}^{38}Ar_{3.94}(2^+)$	1283	2630	7210	7890			
20 Ne _{1.63} (2 ⁺) + 38 Ar _{4.57} (2 ⁺)	3116	8070	28.35	25.03			
$^{20}Ne_{1.63}(2^+) + {}^{38}Ar_{4.59}(5^-)$	20.55	58.97	0.98	5.68			
$^{20}Ne_{1.63}(2^+) + {}^{38}Ar_{4.88}(3^-)$	178.81	456.11	122.31	50.72			
20 Ne _{1.63} (2 ⁺) + 38 Ar _{5.16} (2 ⁺)	1678	4670	14.06	4.36			
²⁰ Ne _{1.63} (2 ⁺) + ³⁸ Ar _{5.35} (4 ⁺)	3.62	6.88	0.0015	0.0273			
20 Ne _{1.63} (2 ⁺) + 38 Ar _{5.51} (3 ⁻)	34.68	58.61	14.11	7.29			
20 Ne _{4.25} (4 ⁺) + 38 Ar _{2.17} (2 ⁺)	47.33	258.80	78.57	82.14			

TABLE II. Comparison between the experimental and the theoretical predictions of the reduced electric quadrupole [B(E2)] and octupole [B(E3)] transition probabilities for the ³⁸Ar, ³⁹K, and ⁴⁰Ca nuclei.

	ФCa		
$B(E2)(e^2 \text{fm}^4)$	$I_i^{\pi} \rightarrow I_f^{\pi}$	Exp.	Theo.
	$0^+_1 \rightarrow 2^+_1$	99ª	105
$B(E3)(e^{2}fm^{6})$	$I_i^{\pi} \rightarrow I_f^{\pi}$	Exp.	Theo.
	$0_1^+ \rightarrow 3_1^-$	11.800 ^b	11.420
	³⁹ K		
$B(E2)(e^2 \text{fm}^4)$	$I_i^{\pi} \rightarrow I_f^{\pi}$	Exp.	Theo.
	$1/2^+_1 \rightarrow 3/2^+_1$	6.9 ^r ; 22 ^e	27.4
$B(E3)(e^{2} \text{fm}^{6})$	$I_i^{\pi} \rightarrow I_f^{\pi}$	Exp.	Theo.
	$3/2^+_1 \rightarrow 7/2^1$	124 ^r	106
	$3/2^+_1 \rightarrow 3/2^1$	269 ^r	217
	$3/2^+_1 \rightarrow 9/2^1$	694 ^r	90
	$3/2_1^+ \rightarrow 5/2_1^-$	549 ^r	1233
	³⁸ Ar		
$B(E2)(e^2 \text{fm}^4)$	$I_i^{\pi} \rightarrow I_f^{\pi}$	Exp.	Theo.
	$0^+_1 \rightarrow 2^+_1$	130 ^a ;121 ± 7.6 ^{d,c}	228.5
	$0^+_2 \rightarrow 2^+_1$	$10.63 \pm 0.76^{\circ}$	15.29
	$0^+_1 \rightarrow 2^+_2$	42 ^d	11.43
	$2^+_1 \rightarrow 2^+_2$	56 ± 11 ^e	241.9
	$4_1^+ \rightarrow 2_1^+$	$7.59 \pm 2.28^{\circ}$	13.5
	$4^+_1 \rightarrow 2^+_2$	$235.3 \pm 68.3^{\circ}$	41.1
	$6_2^+ \rightarrow 4_1^+$	607 ± 304^{e}	37.26
	$5_1^- \rightarrow 3_1^-$	1.44 ± 0.15^{e}	
	$5_2^- \rightarrow 3_1^-$	22 ± 5.3°	
$B(E3)(e^{2}fm^{6})$	$I_i^{\pi} \rightarrow I_f^{\pi}$	Exp.	Theo.
	$0^+_1 \rightarrow 3^1$	9500 ^b	1251

*Reference [71].

^bReference [72].

"Reference [75].

^dReference [76].

*Reference [77].

Reference [78].

TABLE I. Comparison among the ³⁸Ar, ³⁹K, ⁴⁰Ca experimental spectra, and the one obtained by shell-model calculation considering the ZBM2-modified interaction.

	⁴⁰ Ca	
Ι#	E _{Exp.} (MeV)	E _{Theo.} (MeV)
0+	0	0
0;+	3.353	3.538
3-	3.737	4.614
2+	3.904	4.117
•	³⁹ K	
I#	E _{Exp.} (MeV)	E _{Theo.} (MeV)
3/2+	0	0
1/2+	2.523	1.998
7/2	2.814	2.119
3/2	3.019	3.196
9/2	3.597	3.544
5/2	3.883	4.106
3/2	3.939	4.469
11/2-	3.944	3.314
3/2-	4.082	4.363
1/2	4.096	4,718
7/2-	4.127	3,935
, -2	³⁸ Ar	
I#	E _{Exp.} (MeV)	E _{Theo.} (MeV)
01	0	0
2+	2.168	2.201
0;+	3.378	3.862
3-	3.810	3.135
2;+	3.936	3.418
2+	4.565	4.328
5-	4.586	3.731
3-	4.877	4.782
2+	5.157	4.813
4	5.349	4,405
3-	5.513	5.224
2.2	5.595	5.340
5-	5.659	5.271
3-	5.825	5.631
4+	6.053	5.420
2.+	6.250	5.560
4+	6 276	6 071
-3 6 ⁺	6 4 0 9	5 120
*1 >1	6 520	6 184
71	() · · · · · · · ·	
27 5-	6.674	6 227
27 53 6+	6.674	6.227

			Shell mo	odel: jj45pna inte	raction			
¹¹⁶ Cd	Expt.	Th.	¹¹⁵ Cd	Expt.	Th.	¹¹⁴ Cd	Expt.	Th.
0+	0	0	1/2+	0	0.325	0+	0	0
2+	0.513	0.740	(11/2)-	0.181	2.195	2+	0.558	0.604
2+	1.213	1.782	(3/2)+	0.229	0.0	0+	1.135	1.264
4+	1.219	1.712	(5/2)+	0.361	0.534	2+	1.210	1.074
0+	1.283	1.526	(7/2)-	0.394	1.879	4+	1.284	1.543
0+	1.380	2.949	(9/2)-	0.417	2.141	0+	1.305	2.117
			Shell mo	odel: 88Sr45 inte	raction			
¹¹⁶ Cd	Expt.	Th.	¹¹⁷ In	Expt.	Th.	¹¹⁸ Sn	Expt.	Th.
0+	0	0	9/2+	0	0	0+	0	0
2+	0.513	0.721	1/2-	0.315	0.078	2+	1.230	0.802
2+	1.213	1.284	3/2-	0.589	1.023	0+	1.758	3.474
4+	1.219	1.653	3/2+	0.660	2.147	2+	2.043	2.018
0+	1.283	2.032	7/2+	0.748	1.082	0+	2.057	4.304
0+	1.380	2.745	1/2+	0.749	2.011	4+	2.280	2.936

TABLE III. Comparison between the theoretical and experimental low-lying spectra obtained by shell-model calculations for the target and residual nuclei involved in the studied reactions. Energies are in MeV.

TABLE IV. Comparison between calculated and experimental low-lying states for the ¹¹⁶Cd, ¹¹⁴Cd, and ¹¹⁸Sn nuclei. Energies are in MeV.

		In	teractin	g Boson	n Model-	-2		
¹¹⁶ Cd	Expt.	Th.	¹¹⁴ Cd	Expt.	Th.	¹¹⁸ Sn	Expt.	Th.
0+	0	0	0+	0	0	0+	0	0
2+	0.513	0.516	2+	0.558	0.492	2+	1.230	1.201
2+	1.213	1.178	0 +	1.135	1.274	0 +	1.758	1.790
4+	1.219	1.186	2+	1.210	1.125	2+	2.043	2.261
0+	1.283	1.325	4+	1.284	1.130	4+	2.280	2.267

TABLE VII. Comparison between experimental and theoretical integrated cross sections corresponding to the two-proton stripping (for $4^{\circ} < \theta_{lab} < 14^{\circ}$) transfer processes. The amplitudes for the projectile overlaps were derived by shell-model calculation using the *p-sd*-mod interaction. For the target overlaps, the results using the jj45pna and 88Sr45 interactions within the SM, microscopic IBM-2, and the QRPA are reported.

					Cro	oss Sections	(nb)			
						Theory				
		р	SA-shel -sd-mod +	l model <i>jj45pna</i> in	t.	SA-she p-sd-mod	ll model $+ 88Sr45$	S IBN	А M-2	SA QRPA
Final Channel	Expt.	IC CRC-1	Seq DWBA	IC CRC-2	Seq CCBA	IC CRC-2	Seq CCBA	IC CRC-1	IC CRC-2	IC CRC-1
$\frac{{}^{18}O_{gs}(0^+) + {}^{118}Sn_{gs}(0^+)}{{}^{18}O_{gs}(0^+) + {}^{118}Sn_{1.229}(2^+)}$	$40 \pm 15 \\ 140 \pm 60$	22 5.3	19.1 1.6	30.9 26.9	52.1 39.8	39.5 52.7	88.5 106.3	32.7 3.1	23.1 2.6	19 55

2n-transfer reactions

¹⁸0 + ¹³C \succ Phys. Rev C 95, 034603 (2017) ¹⁸0 + ¹⁶0 \succ Phys. Rev C 94, 024610 (2016) ¹⁸0 + ¹⁶0 \succ Phys. Rev C 96, 044603 (2017) ¹⁸0 + ⁶⁴Ni \succ Phys. Rev C 96, 044612 (2017) ¹⁸0 + ²⁸Si \succ Phys. Rev C 97, 064611 (2018) ⁷Be + ⁹Be \succ Phys. Rev C 99, 064617 (2019)

Reação de Transferência 1n-transfer

Processo de transferência de um nucleon e dois nucleons

$$H = T_{\alpha} + h_{\alpha} + V_{\alpha} = T_{\beta} + h_{\beta} + V_{\beta}$$
(1)

$$\Psi = \phi_{\alpha}(\xi_{\alpha})\psi_{\alpha}(\mathbf{R}_{\alpha}) + \phi_{\beta}(\xi_{\beta})\psi_{\beta}(\mathbf{R}_{\beta})$$
(2)

$$(E_{\alpha} - T_{\alpha} - h_{\alpha} - V_{\alpha})\Psi = 0$$
(3)

$$(E - T_{\alpha} - \varepsilon_{\alpha} - V_{\alpha\alpha})\psi_{\alpha}(\boldsymbol{k}_{\alpha}, \boldsymbol{R}_{\alpha}) = (E - T_{\alpha} - \varepsilon_{\alpha})n_{\alpha\beta}\psi_{\beta}(\boldsymbol{k}_{\beta}, \boldsymbol{R}_{\beta}) + V_{\alpha\beta}\psi_{\beta}(\boldsymbol{k}_{\beta}, \boldsymbol{R}_{\beta})$$
(4)

$$(E - T_{\beta} - \varepsilon_{\beta} - V_{\beta\beta})\psi_{\beta}(\mathbf{k}_{\beta}, \mathbf{R}_{\beta}) = (E - T_{\beta} - \varepsilon_{\beta})n_{\beta\alpha}\psi_{\alpha}(\mathbf{k}_{\alpha}, \mathbf{R}_{\alpha}) + V_{\beta\alpha}\psi_{\alpha}(\mathbf{k}_{\alpha}, \mathbf{R}_{\alpha})$$
(5)

$$n_{\alpha\beta} = \int \phi_{\alpha}^{*}(\xi_{\alpha})\phi_{\beta}(\xi_{\beta})d\xi_{\alpha} \qquad V_{\alpha\beta} = \int \phi_{\alpha}^{*}(\xi_{\alpha})V_{\alpha}\phi_{\beta}(\xi_{\beta})d\xi_{\alpha} \qquad (6)$$

NUMEN project

Análise da transferência de múltiplos na reação ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn

Nucleus	B(E2);
	$0^+ \to 2^+ \ (e^2 b^2)$
¹⁴ C	0.0018
¹⁸ O	0.0045
²⁸ Mg	0.035
³⁰ Si	0.022
⁶⁶ Ni	0.060
⁷⁶ Ge	0.270