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• Introduction 

• Numerical technique

‣ Jacobi no-core shell model for S=0, -1 systems

‣ Similarity Renormalization Group (SRG)

•  Results for   hypernuclei:       A = 4 − 7 Λ 4
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• Summary 

•  Results for  nuclei with chiral NN + 3N interactions      A = 3 − 6
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 (hyper)nuclear structure calculationsAb initio

• Faddeev-Yakubovsky integral equation, exact solutions for , arXiv:nucl-th/0004023 


• Green’s function Monte Carlo, require local interactions, arXiv:0804.3501

• No-core shell model (NCSM), arXiv:0904.0463

• Coupled-cluster method, arXiv:1312.7872

• Lattice Monte Carlo, suitable for states with complex geometries, arXiv:0804.3501

• …

A ≤ 4

Goal: solving the non-relativistic A-body Schrödinger Eq. for bound states  

:ab initio
• nucleons and hyperons  are fundamental degrees of freedom

• realistic (microscopic) nuclear interactions as in put:  chiral EFT NN, 3N +YN

• controlled & improvable truncations

 (few)many-body approaches:ab initio

need large model space (soft interactions)

4.1 Separation of NN , Y N and Y Y pairs
We now proceed to evaluate the Hamiltonian matrix elements for the wavefunction defined in eq. (4.6)

h (⇡JT )|H| (4.7)

|
�
↵⇤(Y1N)

�⇤(Y2)i = |↵⇤(Y1N)i ⌦ |Y2i

= |NJT,↵⇤(Y1N)
A�1 ñY2 ĨY2 t̃Y2 ; (J

⇤(Y1N)
A�1 (l̃Y2sY2)ĨY2)J, (T

⇤(Y1N)
A�1 t̃Y2)T i

⌘

N

N

Y1Y2

(4.8)
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∑
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∑
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∑
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 (hyper)nuclear structure calculationsAb initio

(HYP 2006)

At our disposal:

• Faddeev-Yakubovsky method (A. Nogga)  (hyper)nucleiA ≤ 4
• Jacobi NCSM (HL, S. Liebig, A. Nogga) (hyper)nuclei up to p-shell

, arXiv:2008.11565v2arXiv:1510.06070v1

3

https://arxiv.org/abs/2008.11565v2
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No-core shell model (NCSM)

• Two approaches to construct basis states:

 ‣ Slater determinant basis depending on single-particle coordinates (m-scheme NCSM)

antisymmetric, but contain CM motion  large dimension⇒
importance truncated basis (IT-NCSM) for p-shell

‣ Jacobi basis expressed in relative Jacobi coordinate (Jacobi NCSM):

preserve translational symmetry of H, no CM motion         small dimension
antisymmetrization of basis states is demanding  A ≤ 9

⇒

• Idea: represent the A-body translationally invariant (hyper)nuclear Hamiltonian

 

Hint =
A

∑
i=1

k2
i

2m
+

A

∑
i< j=1

VNN
ij +

A−1

∑
i< j<k=1

VNNN]
ijk +

A−1

∑
i=1

VYN
iY −

P2

2M

=
A

∑
i< j=1

mi + mj

M
p2

ij

μ
+

A−1

∑
i< j=1

VNN
ij +

A−1

∑
i< j<k=1

VNNN
ijk +

A−1

∑
i=1

VYN
iY , pij =

1
2

(ki − kj)

in a basis constructed from HO functions: 
ϕnlm(p) = ⟨p |nlm⟩ = Rnl(p)Ylm( ̂p)

Appendix C Jacobi coordinates for an A-body system
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Figure C.1: A possible set of Jacobi coordinates for an A-body system
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(C.4)

Figure C.2: A possible set of Jacobi coordinates for an A-body system

C.1 Orthogonal transformation between two sets of
three-cluster Jacobi coordinates

Generally, for describing a system of three clusters, for example 1,2 and 3, one can use di↵erent sets
of Jacobi coordinates in which either cluster 1 or 2 or 3 is the outer spectator. These three di↵erent
sets of intrinsic Jacobi coordinates are illustrated in Fig. C.3
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Fig. 2 Two representations of |
⇣
↵

?(1)
⌘
?(1)

i coordinates used for the antisymmetrization operator. The ar-
rangement matches the general coordinates shown in Fig. 1. Note that the direction of the coordinates differs
for the subsystems.

rest of the A-body system. The relative distance or momentum of the two clusters point here towards
the i-nucleon cluster. This operation can be repeated to form states with a special subclustering. The
graphical representation given in the table should clarify the clusters involved. Since we are going to
obtain the basis states recursively starting from A = 3, A-body cluster states are labeled by the index
of the (A–x)N-clusters. The contributing indices are given in the third column. The number of particles
of the subclusters is here given as a subscript. We assume that the complete state and the clusters are
antisymmetrized which is not the case anymore for the states that explicitly single out clusters. This
implies that more states are required to cover the physical Hilbert space completely. The last column
of the table gives first estimates of the relations of the dimensionalities.

It is now the aim to express the completely antisymmetric states in terms of |↵?(1)i. In the first
step, we therefore need to obtain the antisymmetrization operator A in this basis. Assuming antisym-
metry for the (A–1)-nucleon system, the matrix of A for A nucleons can be written in terms of the
transposition operator of the outer two nucleons PA�1,A as

h↵
?(1)

|A|�
?(1)

i = 1

A
h↵

?(1)

|
�

� (A� 1)PA�1,A

�
|�

?(1)

i . (13)

The antisymmetric A-body states are eigenstates of A for the eigenvalue � = 1, e.g. are solutions of
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?(1)

|A|�
?(1)

ih�
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          (ab)  b
      a�

|

�� b3N�
�
�

�� b*

jac-ncsm�

������2
              3
 1     (13)�

������2
(12)          3
 1�

����������������     c�����
        (ac)

                b
      a�
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i . (14)

Here, the graphical representation of the states is added to simplify the notation and a sum over �
?(1)

-
states is implied. The matrix elements h
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i are the well-known coefficients of fractional parantage
(cfp) [29] which define the antisymmetric A-body state in terms of antisymmetric (A–1)-body states
in relative motion with respect to the A-th nucleon. We will obtain these states by diagonalization of
A. The problem is therefore reduced to the calculations of the matrix h↵?(1) |A|�?(1)i. To this aim, we
need to explicitly define the coupling scheme for states |↵?(1)i given by

|↵
?(1)

i = |↵A�1 nA (lA sA) IA tA ;
�
JA�1 IA

�
J

�
TA�1 tA

�
T
↵
. (15)

The states are based on complete antisymmetrized states |↵A�1i with well defined total angular
momentum JA�1 and isospin TA�1 and total HO energy quantum number NA�1. Note that we dropped
the last quantum number in Eq. (15) to simplify the notation. The motion of the A-th nucleon is given
by its HO quantum number nA, orbital angular momentum lA, spin sA = 1

2 , total angular momentum
IA and isospin tA = 1

2 . In order to end up with a well-defined total angular momentum J and isospin
T of the A-body system, we finally couple the individual angular momenta and isospins as indicated.

The antisymmetrization operator is given by PA�1,A. In the next step, we therefore need to use the
known cfp of the (A–1)-nucleon system to disentangle the (A–1)-th nucleon from the antisymmetric
cluster. We end up with states

|
⇣
↵

?(1)
⌘
?(1)

i = |↵
?(1)

A�1 nA (lA sA) IA tA ;
�
JA�1 IA

�
J

�
TA�1 tA

�
T
↵
. (16)

or more explicitly by reinserting the definition Eq. (15)

|
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⌘
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� �
JA�2 IA�1

�
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�
J

��
TA�2 tA�1

�
TA�1 tA

�
T
↵
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�� b3N�
�
�

�� b*
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������2
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 1     (13)�

������2
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 1�
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i. (17)

≡ |𝒩 J T, i⟩

(R. Wirth et al  PRL (2014,2016), PRC(2018) )

(H. Le at al EPJA 8 (2020), PLB (2020))
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Hamiltonian matrix elements in Jacobi basis

HNucl =
A

∑
i< j=1

(
2
A

p2
ij

m
+ VNN

ij ) +
A

∑
i< j<k=1

VNNN
ijk =

A

∑
i< j=1

hNN
ij +

A

∑
i< j<k=1

VNNN
ijk ,

‣ transformation to other bases
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i coordinates used for the antisymmetrization operator. The ar-
rangement matches the general coordinates shown in Fig. 1. Note that the direction of the coordinates differs
for the subsystems.

rest of the A-body system. The relative distance or momentum of the two clusters point here towards
the i-nucleon cluster. This operation can be repeated to form states with a special subclustering. The
graphical representation given in the table should clarify the clusters involved. Since we are going to
obtain the basis states recursively starting from A = 3, A-body cluster states are labeled by the index
of the (A–x)N-clusters. The contributing indices are given in the third column. The number of particles
of the subclusters is here given as a subscript. We assume that the complete state and the clusters are
antisymmetrized which is not the case anymore for the states that explicitly single out clusters. This
implies that more states are required to cover the physical Hilbert space completely. The last column
of the table gives first estimates of the relations of the dimensionalities.

It is now the aim to express the completely antisymmetric states in terms of |↵?(1)i. In the first
step, we therefore need to obtain the antisymmetrization operator A in this basis. Assuming antisym-
metry for the (A–1)-nucleon system, the matrix of A for A nucleons can be written in terms of the
transposition operator of the outer two nucleons PA�1,A as
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i are the well-known coefficients of fractional parantage
(cfp) [29] which define the antisymmetric A-body state in terms of antisymmetric (A–1)-body states
in relative motion with respect to the A-th nucleon. We will obtain these states by diagonalization of
A. The problem is therefore reduced to the calculations of the matrix h↵?(1) |A|�?(1)i. To this aim, we
need to explicitly define the coupling scheme for states |↵?(1)i given by
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i = |↵A�1 nA (lA sA) IA tA ;
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JA�1 IA
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J
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TA�1 tA
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↵
. (15)

The states are based on complete antisymmetrized states |↵A�1i with well defined total angular
momentum JA�1 and isospin TA�1 and total HO energy quantum number NA�1. Note that we dropped
the last quantum number in Eq. (15) to simplify the notation. The motion of the A-th nucleon is given
by its HO quantum number nA, orbital angular momentum lA, spin sA = 1

2 , total angular momentum
IA and isospin tA = 1

2 . In order to end up with a well-defined total angular momentum J and isospin
T of the A-body system, we finally couple the individual angular momenta and isospins as indicated.

The antisymmetrization operator is given by PA�1,A. In the next step, we therefore need to use the
known cfp of the (A–1)-nucleon system to disentangle the (A–1)-th nucleon from the antisymmetric
cluster. We end up with states

|
⇣
↵

?(1)
⌘
?(1)

i = |↵
?(1)

A�1 nA (lA sA) IA tA ;
�
JA�1 IA

�
J

�
TA�1 tA

�
T
↵
. (16)

or more explicitly by reinserting the definition Eq. (15)

|
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?(1)

i = |↵A�2 nA�1
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� �
JA�2 IA�1
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TA�2 tA�1

�
TA�1 tA
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trans. coefficients

10

6j-coefficient and phases which differ from the ones in the previous section because the different iden-
tification of clusters used in |

⇣
↵

?(1)
⌘
?(1)i here and in the previous section requires an opposite order

for the coupling of JA�2 and 1
2 to S13 in order to match to Eq. (11). Then the quantum numbers can

been identified as summarized in Table 4. Altogether, we find

h
⇣
�
?(1)

⌘
?(1)

|�
?(A�2)

i

= h

������������2
(12)          
    
              
  1      (A-2)N�

�� 2NF: �
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>;
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�
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�
A : L |n�

12 l
�
12 , n

�
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� : Li
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A
. (23)

for this third matrix element.
Based on these three ingredients, the transition to |�?(A�2)i states is obtained by

h↵|�
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i (24)

where summations over the intermediate states is implied. This has been implemented in two steps.
We decided to first perfom the summation over �

?(1)

, store the intermediate result in core memory and
then proceed to the

⇣
�
?(1)

⌘
?(1)

summation. In Table 3, we also give the dimensions for ↵
?(A�2)

states for
a few selected blocks. The transition matrix element will be made publicly available in HDF5 format.
The sets generated so far are also tabulated in Appendix B.

4 3N+(A–3)N states for 3N operators

Although we have not used them in this first application, it will be important in future to apply also
3N operators, e.g. to take 3N interactions into account. As can be seen below, the calculation of the
pertinent transition coefficients can be done in three steps involving four kinds of matrix elements.
Therefore, the calculation is not a direct extension of the 2N+(A–2)N transitions discussed in the
previous section. We note however that further extensions towards 4N, 5N, . . . operators can be done
using the same three steps as outlined now for the 3N case. Also for this reason, we consider it
interesting to explicitly give our results for the 3N+(A–3)N transitions here.

For the application of the 3N operators, we define states
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whereby introducing the new intermediate spin quantum number SA�2. Similarly, the original coupling
of the |

⇣
✏
?(1)

⌘
?(A�3)i states has to be recoupled from

(J12 (l3 s3) I3) J3 to ( l3 (s3J12)S3) J3 (28)

where S3 was introduced as a new spin quantum number. Both recouplings lead to 6j-coefficients and
phases. Then the quantum numbers can be matched to the ones of Eq. (11) as shown in Table 5. The
complete expression then reads
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We note that the extension to 4N-(A–4)N transitions will only require straightforward changes of this
relation. Based on these three ingredients, the transition to |�?(A�3)i states is obtained by
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where again sums over intermediate states are implied. Our implementation generates the complete
expression in three steps where the results dependent on the intermediate quantum numbers. As can be
seen from Table 1, the size of these sets of intermediate states are orders of magnitude larger than the set
of completely antisymmetrized A-body states implying not only more floating point operations but also
larger memory requirements. The parallelization on a distributed memory massively parallel computer
therefore required a compromise of most efficient memory usage and minimalization of communication
between the processes. The details of the technical implementation are discussed in more detail in [33].
We stress again that an extension to more complex operators can be done using the same algorithms
in future.
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whereby introducing the new intermediate spin quantum number SA�2. Similarly, the original coupling
of the |

⇣
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(J12 (l3 s3) I3) J3 to ( l3 (s3J12)S3) J3 (28)

where S3 was introduced as a new spin quantum number. Both recouplings lead to 6j-coefficients and
phases. Then the quantum numbers can be matched to the ones of Eq. (11) as shown in Table 5. The
complete expression then reads
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We note that the extension to 4N-(A–4)N transitions will only require straightforward changes of this
relation. Based on these three ingredients, the transition to |�?(A�3)i states is obtained by
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where again sums over intermediate states are implied. Our implementation generates the complete
expression in three steps where the results dependent on the intermediate quantum numbers. As can be
seen from Table 1, the size of these sets of intermediate states are orders of magnitude larger than the set
of completely antisymmetrized A-body states implying not only more floating point operations but also
larger memory requirements. The parallelization on a distributed memory massively parallel computer
therefore required a compromise of most efficient memory usage and minimalization of communication
between the processes. The details of the technical implementation are discussed in more detail in [33].
We stress again that an extension to more complex operators can be done using the same algorithms
in future.
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Fig. 2 Two representations of |
⇣
↵

?(1)
⌘
?(1)

i coordinates used for the antisymmetrization operator. The ar-
rangement matches the general coordinates shown in Fig. 1. Note that the direction of the coordinates differs
for the subsystems.

rest of the A-body system. The relative distance or momentum of the two clusters point here towards
the i-nucleon cluster. This operation can be repeated to form states with a special subclustering. The
graphical representation given in the table should clarify the clusters involved. Since we are going to
obtain the basis states recursively starting from A = 3, A-body cluster states are labeled by the index
of the (A–x)N-clusters. The contributing indices are given in the third column. The number of particles
of the subclusters is here given as a subscript. We assume that the complete state and the clusters are
antisymmetrized which is not the case anymore for the states that explicitly single out clusters. This
implies that more states are required to cover the physical Hilbert space completely. The last column
of the table gives first estimates of the relations of the dimensionalities.

It is now the aim to express the completely antisymmetric states in terms of |↵?(1)i. In the first
step, we therefore need to obtain the antisymmetrization operator A in this basis. Assuming antisym-
metry for the (A–1)-nucleon system, the matrix of A for A nucleons can be written in terms of the
transposition operator of the outer two nucleons PA�1,A as
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The antisymmetric A-body states are eigenstates of A for the eigenvalue � = 1, e.g. are solutions of
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Here, the graphical representation of the states is added to simplify the notation and a sum over �
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-
states is implied. The matrix elements h
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i are the well-known coefficients of fractional parantage
(cfp) [29] which define the antisymmetric A-body state in terms of antisymmetric (A–1)-body states
in relative motion with respect to the A-th nucleon. We will obtain these states by diagonalization of
A. The problem is therefore reduced to the calculations of the matrix h↵?(1) |A|�?(1)i. To this aim, we
need to explicitly define the coupling scheme for states |↵?(1)i given by
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The states are based on complete antisymmetrized states |↵A�1i with well defined total angular
momentum JA�1 and isospin TA�1 and total HO energy quantum number NA�1. Note that we dropped
the last quantum number in Eq. (15) to simplify the notation. The motion of the A-th nucleon is given
by its HO quantum number nA, orbital angular momentum lA, spin sA = 1

2 , total angular momentum
IA and isospin tA = 1

2 . In order to end up with a well-defined total angular momentum J and isospin
T of the A-body system, we finally couple the individual angular momenta and isospins as indicated.

The antisymmetrization operator is given by PA�1,A. In the next step, we therefore need to use the
known cfp of the (A–1)-nucleon system to disentangle the (A–1)-th nucleon from the antisymmetric
cluster. We end up with states
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or more explicitly by reinserting the definition Eq. (15)
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whereby introducing the new intermediate spin quantum number SA�2. Similarly, the original coupling
of the |
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?(A�3)i states has to be recoupled from

(J12 (l3 s3) I3) J3 to ( l3 (s3J12)S3) J3 (28)

where S3 was introduced as a new spin quantum number. Both recouplings lead to 6j-coefficients and
phases. Then the quantum numbers can be matched to the ones of Eq. (11) as shown in Table 5. The
complete expression then reads
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We note that the extension to 4N-(A–4)N transitions will only require straightforward changes of this
relation. Based on these three ingredients, the transition to |�?(A�3)i states is obtained by
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where again sums over intermediate states are implied. Our implementation generates the complete
expression in three steps where the results dependent on the intermediate quantum numbers. As can be
seen from Table 1, the size of these sets of intermediate states are orders of magnitude larger than the set
of completely antisymmetrized A-body states implying not only more floating point operations but also
larger memory requirements. The parallelization on a distributed memory massively parallel computer
therefore required a compromise of most efficient memory usage and minimalization of communication
between the processes. The details of the technical implementation are discussed in more detail in [33].
We stress again that an extension to more complex operators can be done using the same algorithms
in future.
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Fig. 2 Two representations of |
⇣
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?(1)
⌘
?(1)

i coordinates used for the antisymmetrization operator. The ar-
rangement matches the general coordinates shown in Fig. 1. Note that the direction of the coordinates differs
for the subsystems.

rest of the A-body system. The relative distance or momentum of the two clusters point here towards
the i-nucleon cluster. This operation can be repeated to form states with a special subclustering. The
graphical representation given in the table should clarify the clusters involved. Since we are going to
obtain the basis states recursively starting from A = 3, A-body cluster states are labeled by the index
of the (A–x)N-clusters. The contributing indices are given in the third column. The number of particles
of the subclusters is here given as a subscript. We assume that the complete state and the clusters are
antisymmetrized which is not the case anymore for the states that explicitly single out clusters. This
implies that more states are required to cover the physical Hilbert space completely. The last column
of the table gives first estimates of the relations of the dimensionalities.

It is now the aim to express the completely antisymmetric states in terms of |↵?(1)i. In the first
step, we therefore need to obtain the antisymmetrization operator A in this basis. Assuming antisym-
metry for the (A–1)-nucleon system, the matrix of A for A nucleons can be written in terms of the
transposition operator of the outer two nucleons PA�1,A as
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Here, the graphical representation of the states is added to simplify the notation and a sum over �
?(1)

-
states is implied. The matrix elements h
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i are the well-known coefficients of fractional parantage
(cfp) [29] which define the antisymmetric A-body state in terms of antisymmetric (A–1)-body states
in relative motion with respect to the A-th nucleon. We will obtain these states by diagonalization of
A. The problem is therefore reduced to the calculations of the matrix h↵?(1) |A|�?(1)i. To this aim, we
need to explicitly define the coupling scheme for states |↵?(1)i given by
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i = |↵A�1 nA (lA sA) IA tA ;
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JA�1 IA

�
J

�
TA�1 tA

�
T
↵
. (15)

The states are based on complete antisymmetrized states |↵A�1i with well defined total angular
momentum JA�1 and isospin TA�1 and total HO energy quantum number NA�1. Note that we dropped
the last quantum number in Eq. (15) to simplify the notation. The motion of the A-th nucleon is given
by its HO quantum number nA, orbital angular momentum lA, spin sA = 1

2 , total angular momentum
IA and isospin tA = 1

2 . In order to end up with a well-defined total angular momentum J and isospin
T of the A-body system, we finally couple the individual angular momenta and isospins as indicated.

The antisymmetrization operator is given by PA�1,A. In the next step, we therefore need to use the
known cfp of the (A–1)-nucleon system to disentangle the (A–1)-th nucleon from the antisymmetric
cluster. We end up with states
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or more explicitly by reinserting the definition Eq. (15)
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of both kinds of states, |
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⌘
?(2)i and |
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?(1)
⌘
?(A�3)i, do not fit to the general expression. For the
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?(2)i, we therefore recouple the angular momenta of the (A–2)N-subsystem from
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IA�2
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JA�2 to

�
lA�2

�
s3JA�3

�
SA�2

�
JA�2 (27)

whereby introducing the new intermediate spin quantum number SA�2. Similarly, the original coupling
of the |

⇣
✏
?(1)

⌘
?(A�3)i states has to be recoupled from

(J12 (l3 s3) I3) J3 to ( l3 (s3J12)S3) J3 (28)

where S3 was introduced as a new spin quantum number. Both recouplings lead to 6j-coefficients and
phases. Then the quantum numbers can be matched to the ones of Eq. (11) as shown in Table 5. The
complete expression then reads
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✏
3 T̂

✏
3 Ĵ
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We note that the extension to 4N-(A–4)N transitions will only require straightforward changes of this
relation. Based on these three ingredients, the transition to |�?(A�3)i states is obtained by
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where again sums over intermediate states are implied. Our implementation generates the complete
expression in three steps where the results dependent on the intermediate quantum numbers. As can be
seen from Table 1, the size of these sets of intermediate states are orders of magnitude larger than the set
of completely antisymmetrized A-body states implying not only more floating point operations but also
larger memory requirements. The parallelization on a distributed memory massively parallel computer
therefore required a compromise of most efficient memory usage and minimalization of communication
between the processes. The details of the technical implementation are discussed in more detail in [33].
We stress again that an extension to more complex operators can be done using the same algorithms
in future.

12

of both kinds of states, |
⇣
↵

?(1)
⌘
?(2)i and |

⇣
↵

?(1)
⌘
?(A�3)i, do not fit to the general expression. For the

|
⇣
↵

?(1)
⌘
?(2)i, we therefore recouple the angular momenta of the (A–2)N-subsystem from

�
JA�3

�
lA�2 s3

�
IA�2

�
JA�2 to

�
lA�2

�
s3JA�3

�
SA�2

�
JA�2 (27)

whereby introducing the new intermediate spin quantum number SA�2. Similarly, the original coupling
of the |

⇣
✏
?(1)

⌘
?(A�3)i states has to be recoupled from

(J12 (l3 s3) I3) J3 to ( l3 (s3J12)S3) J3 (28)

where S3 was introduced as a new spin quantum number. Both recouplings lead to 6j-coefficients and
phases. Then the quantum numbers can be matched to the ones of Eq. (11) as shown in Table 5. The
complete expression then reads

h
⇣
�
?(1)

⌘
?(2)

|
⇣
✏
?(1)

⌘
?(A�3)

i = h�� b

jac-ncsm�

          (12) 
         

       3     (A-3)N

|

�� b

jac-ncsm�

      1  (12)  2            
         

         
      3      (A-3)N

      1   (12)  2
         

       3     (A-3)N

i

= (�1)3JA�3+l�A�2+I�
A�2+2T �

A�2+l✏3+I✏
3+1+J12+��+�✏

⇥ Î
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We note that the extension to 4N-(A–4)N transitions will only require straightforward changes of this
relation. Based on these three ingredients, the transition to |�?(A�3)i states is obtained by
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where again sums over intermediate states are implied. Our implementation generates the complete
expression in three steps where the results dependent on the intermediate quantum numbers. As can be
seen from Table 1, the size of these sets of intermediate states are orders of magnitude larger than the set
of completely antisymmetrized A-body states implying not only more floating point operations but also
larger memory requirements. The parallelization on a distributed memory massively parallel computer
therefore required a compromise of most efficient memory usage and minimalization of communication
between the processes. The details of the technical implementation are discussed in more detail in [33].
We stress again that an extension to more complex operators can be done using the same algorithms
in future.
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We note that the extension to 4N-(A–4)N transitions will only require straightforward changes of this
relation. Based on these three ingredients, the transition to |�?(A�3)i states is obtained by
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where again sums over intermediate states are implied. Our implementation generates the complete
expression in three steps where the results dependent on the intermediate quantum numbers. As can be
seen from Table 1, the size of these sets of intermediate states are orders of magnitude larger than the set
of completely antisymmetrized A-body states implying not only more floating point operations but also
larger memory requirements. The parallelization on a distributed memory massively parallel computer
therefore required a compromise of most efficient memory usage and minimalization of communication
between the processes. The details of the technical implementation are discussed in more detail in [33].
We stress again that an extension to more complex operators can be done using the same algorithms
in future.
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Fig. 2 Two representations of |
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?(1)
⌘
?(1)

i coordinates used for the antisymmetrization operator. The ar-
rangement matches the general coordinates shown in Fig. 1. Note that the direction of the coordinates differs
for the subsystems.

rest of the A-body system. The relative distance or momentum of the two clusters point here towards
the i-nucleon cluster. This operation can be repeated to form states with a special subclustering. The
graphical representation given in the table should clarify the clusters involved. Since we are going to
obtain the basis states recursively starting from A = 3, A-body cluster states are labeled by the index
of the (A–x)N-clusters. The contributing indices are given in the third column. The number of particles
of the subclusters is here given as a subscript. We assume that the complete state and the clusters are
antisymmetrized which is not the case anymore for the states that explicitly single out clusters. This
implies that more states are required to cover the physical Hilbert space completely. The last column
of the table gives first estimates of the relations of the dimensionalities.

It is now the aim to express the completely antisymmetric states in terms of |↵?(1)i. In the first
step, we therefore need to obtain the antisymmetrization operator A in this basis. Assuming antisym-
metry for the (A–1)-nucleon system, the matrix of A for A nucleons can be written in terms of the
transposition operator of the outer two nucleons PA�1,A as
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The antisymmetric A-body states are eigenstates of A for the eigenvalue � = 1, e.g. are solutions of
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Here, the graphical representation of the states is added to simplify the notation and a sum over �
?(1)

-
states is implied. The matrix elements h
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i are the well-known coefficients of fractional parantage
(cfp) [29] which define the antisymmetric A-body state in terms of antisymmetric (A–1)-body states
in relative motion with respect to the A-th nucleon. We will obtain these states by diagonalization of
A. The problem is therefore reduced to the calculations of the matrix h↵?(1) |A|�?(1)i. To this aim, we
need to explicitly define the coupling scheme for states |↵?(1)i given by

|↵
?(1)

i = |↵A�1 nA (lA sA) IA tA ;
�
JA�1 IA

�
J

�
TA�1 tA

�
T
↵
. (15)

The states are based on complete antisymmetrized states |↵A�1i with well defined total angular
momentum JA�1 and isospin TA�1 and total HO energy quantum number NA�1. Note that we dropped
the last quantum number in Eq. (15) to simplify the notation. The motion of the A-th nucleon is given
by its HO quantum number nA, orbital angular momentum lA, spin sA = 1

2 , total angular momentum
IA and isospin tA = 1

2 . In order to end up with a well-defined total angular momentum J and isospin
T of the A-body system, we finally couple the individual angular momenta and isospins as indicated.

The antisymmetrization operator is given by PA�1,A. In the next step, we therefore need to use the
known cfp of the (A–1)-nucleon system to disentangle the (A–1)-th nucleon from the antisymmetric
cluster. We end up with states
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or more explicitly by reinserting the definition Eq. (15)
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whereby introducing the new intermediate spin quantum number SA�2. Similarly, the original coupling
of the |

⇣
✏
?(1)

⌘
?(A�3)i states has to be recoupled from

(J12 (l3 s3) I3) J3 to ( l3 (s3J12)S3) J3 (28)

where S3 was introduced as a new spin quantum number. Both recouplings lead to 6j-coefficients and
phases. Then the quantum numbers can be matched to the ones of Eq. (11) as shown in Table 5. The
complete expression then reads
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We note that the extension to 4N-(A–4)N transitions will only require straightforward changes of this
relation. Based on these three ingredients, the transition to |�?(A�3)i states is obtained by
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where again sums over intermediate states are implied. Our implementation generates the complete
expression in three steps where the results dependent on the intermediate quantum numbers. As can be
seen from Table 1, the size of these sets of intermediate states are orders of magnitude larger than the set
of completely antisymmetrized A-body states implying not only more floating point operations but also
larger memory requirements. The parallelization on a distributed memory massively parallel computer
therefore required a compromise of most efficient memory usage and minimalization of communication
between the processes. The details of the technical implementation are discussed in more detail in [33].
We stress again that an extension to more complex operators can be done using the same algorithms
in future.

2-body matrix element

⇒

13

Fig. 5 !-dependence of the 3H binding energy for � = 1.5 fm�1 (left) and � = 2.5 fm�1 (right). Results for
different model space sizes can be distinguished by the different markers and colors. The solid lines are added
to guide the eye, the dashed lines are obtained using Eq. (33).

5 Results

As a first application of the cfp and transition coefficients, we are now presenting binding energies for
light nucei based on these Jacobi HO states. For this test, we only use NN interactions. In order to
be able to obtain converged results, we rely on SRG evolved interactions [24] starting from the chiral
interaction at next-to-next-to-next-to-leading order (N3LO) from the Idaho group [34] considering NN
partial waves up to J

max

NN = 6. The charge dependence of the nuclear force is taken into account by
building an averaged NN interaction as outlined in [35]. The relative weight of proton-proton (pp),
neutron-neutron (nn) and neutron-proton (np) interactions in isospin T12 = 1 states thereby depend
on the nucleus considered. For pp and nn interactions, we added the electromagnetic interactions of
AV18 [36].

For the solution of the Schrödinger equation and taking only NN interactions into account, we
rewrite the matrix elements of the Hamiltonian in the antisymmetrized A-nucleon basis |↵ i as

h↵ |HA|� i = h↵ |�
?(A�2)

ih�
?(A�2)

|
AX

i<j=1

Hij |�
?(A�2)

ih�
?(A�2)

|� i . (31)

The coefficients h↵ |�?(A�2)i are known from the previous sections, independent of the HO frequency
! and conserve total J ,T and N . The two-nucleon matrix elements can be simplified making use of
the identity of the nucleons

h�
?(A�2)

|
AX

i<j=1

Hij |�
?(A�2)

i = �(N ,J,T )�A�2 (N ,J,T )�A�2

✓
A

2

◆
h �12 |

⇣ 2

A
T12 + V12

⌘
| �12 i . (32)

It is convenient to express the relative kinetic energy in terms of an NN operator. This matrix elements
conserves J and T in our approximation. It will however not conserve N . Nevertheless, all quantum
numbers of the (A–2)N-subsystem are conserved as indicated by the Kronecker � symbols. As usual,
the NN interaction is diagonal in J12 and T12. Therefore, the application of HA on an arbitrary A-body
state can be separated in three steps that only evolve rather low dimensional operations. The use of
Jacobi coordinates further reduces the dimensionality since the problem can be solved for each J and T

independently. Therefore, once the cfp and transition coefficients are known, the calculations are much
simpler and can be done quickly. In the following, we therefore map out the complete dependence on
the HO frequency ! of the energy of each state for all model space size defined by the maximal HO
energy N .

δcore(A−2) arXiv:1510.06070v1
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Fig. 2 Two representations of |
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i coordinates used for the antisymmetrization operator. The ar-
rangement matches the general coordinates shown in Fig. 1. Note that the direction of the coordinates differs
for the subsystems.

rest of the A-body system. The relative distance or momentum of the two clusters point here towards
the i-nucleon cluster. This operation can be repeated to form states with a special subclustering. The
graphical representation given in the table should clarify the clusters involved. Since we are going to
obtain the basis states recursively starting from A = 3, A-body cluster states are labeled by the index
of the (A–x)N-clusters. The contributing indices are given in the third column. The number of particles
of the subclusters is here given as a subscript. We assume that the complete state and the clusters are
antisymmetrized which is not the case anymore for the states that explicitly single out clusters. This
implies that more states are required to cover the physical Hilbert space completely. The last column
of the table gives first estimates of the relations of the dimensionalities.

It is now the aim to express the completely antisymmetric states in terms of |↵?(1)i. In the first
step, we therefore need to obtain the antisymmetrization operator A in this basis. Assuming antisym-
metry for the (A–1)-nucleon system, the matrix of A for A nucleons can be written in terms of the
transposition operator of the outer two nucleons PA�1,A as
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The antisymmetric A-body states are eigenstates of A for the eigenvalue � = 1, e.g. are solutions of
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Here, the graphical representation of the states is added to simplify the notation and a sum over �
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-
states is implied. The matrix elements h
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i are the well-known coefficients of fractional parantage
(cfp) [29] which define the antisymmetric A-body state in terms of antisymmetric (A–1)-body states
in relative motion with respect to the A-th nucleon. We will obtain these states by diagonalization of
A. The problem is therefore reduced to the calculations of the matrix h↵?(1) |A|�?(1)i. To this aim, we
need to explicitly define the coupling scheme for states |↵?(1)i given by
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i = |↵A�1 nA (lA sA) IA tA ;
�
JA�1 IA

�
J

�
TA�1 tA

�
T
↵
. (15)

The states are based on complete antisymmetrized states |↵A�1i with well defined total angular
momentum JA�1 and isospin TA�1 and total HO energy quantum number NA�1. Note that we dropped
the last quantum number in Eq. (15) to simplify the notation. The motion of the A-th nucleon is given
by its HO quantum number nA, orbital angular momentum lA, spin sA = 1

2 , total angular momentum
IA and isospin tA = 1

2 . In order to end up with a well-defined total angular momentum J and isospin
T of the A-body system, we finally couple the individual angular momenta and isospins as indicated.

The antisymmetrization operator is given by PA�1,A. In the next step, we therefore need to use the
known cfp of the (A–1)-nucleon system to disentangle the (A–1)-th nucleon from the antisymmetric
cluster. We end up with states
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or more explicitly by reinserting the definition Eq. (15)
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whereby introducing the new intermediate spin quantum number SA�2. Similarly, the original coupling
of the |
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where S3 was introduced as a new spin quantum number. Both recouplings lead to 6j-coefficients and
phases. Then the quantum numbers can be matched to the ones of Eq. (11) as shown in Table 5. The
complete expression then reads
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We note that the extension to 4N-(A–4)N transitions will only require straightforward changes of this
relation. Based on these three ingredients, the transition to |�?(A�3)i states is obtained by
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where again sums over intermediate states are implied. Our implementation generates the complete
expression in three steps where the results dependent on the intermediate quantum numbers. As can be
seen from Table 1, the size of these sets of intermediate states are orders of magnitude larger than the set
of completely antisymmetrized A-body states implying not only more floating point operations but also
larger memory requirements. The parallelization on a distributed memory massively parallel computer
therefore required a compromise of most efficient memory usage and minimalization of communication
between the processes. The details of the technical implementation are discussed in more detail in [33].
We stress again that an extension to more complex operators can be done using the same algorithms
in future.

HNucl⟨i𝒩JT |HNucl | i𝒩JT⟩ ≡• evaluating                                                                       :

• basis truncation:   

⇒ Eb = Eb(ω, 𝒩max)

require  extrapolation  𝒩max → ∞

𝒩 = 𝒩A−2 + N2N + 2nλ2N
+ λ2N = 𝒩A−3 + N3N + λ3N + 2nλ3N

≤ 𝒩max
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Extrapolation of binding energies

• Two parameters in NCSM:  HO-ω, and 𝒩 ⇒ Eb = Eb(ω, 𝒩)

E𝒩 = E∞ + Ae−b𝒩                 Eb(ω, 𝒩) = E𝒩 + κ(log(ω) − log(ωopt))2

E𝒩

‣  shifts to smaller values as  increases


‣ -dependence energy curves flatten with increasing 

ωopt 𝒩
ω 𝒩

δE = E∞ − E𝒩max

E𝒩+2 − E𝒩
NN : χN4LO + (500)

λ = 2.0 fm−1

‣  converges to  strictly from aboveE𝒩 E∞

4He
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Chiral NN & YN interactions

• LECs are determined via a fit to experiment:

‣ 5000 NN data + deutron             NN forces up to , 3NF up to   (Bochum, Bonn, Idaho,…)N4LO+ N3LO

‣  37 YN data, no YN bound state          YN forces up to  (NLO13, NLO19 J. Haidenbauer, U-G. Meißner,..)NLO
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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BB force

2 (5)  NN (YN)  LECs

short range parameters

+7 (+23)  NN (YN)  LECs
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the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
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Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  Epelbaum et al. ’02

Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

Chiral Expansion of the Nuclear Forces

Available matrix elements
LENPIC ´19

π, K, η

additional constraints are expected from studying (light) hypernuclei or lattice simulations
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Convergence of  with respect to E 𝒩

χN2LO(500)

1S0

3S1

3S1− 3D1

N2LO(500)

λ = 2.24 fm−1

4He4He

• BB interactions contain short-range and tensor correlations that couple 
low- and high-momentum states           NCSM calculations converge slowly
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Similarity Renormalization Group (SRG)

Idea:  continuously apply unitary transformation to H to suppress off-diagonal matrix elements

F.J. Wegner NPB 90 (2000).  S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

dV(s)
ds

= [[Trel, V(s)], H(s)], H(s) = Trel + V(s);

V(s) = V12(s) + V13(s) + V23(s) + V123(s) + …

Trel = T12 + T3 = T23 + T1 = T31 + T2

1 2 3

VNN

10 20 30

V12

1 2 3

VNN

10 20 30

V23

2 1 3

VNN

20 10 30

V13

Figure 36: The three contributions of two-body interactions Vi j in a three-body basis. The vertices denote antisymmetrized interactions, where we
also included the spectator particle in each diagram. The di↵erent diagrams are related by permutation of states, specifically V23 = P123V12P�1

123
and V13 = P�1

132V12P132 (see main text).

below.
Similarly we obtain for the kinetic energy:

⌦
p0q0↵0|T12|pq↵

↵
{12} {12} =

p2

m
�(q � q0)

qq0
�↵↵0 ,

⌦
p0q0↵0|T3|pq↵

↵
{12} {12} =

�(p � p0)
pp0

3
4

q2

m
�↵↵0 , (154)

and accordingly for the other terms in their natural basis representations. Note that from the relations above the
following commutator relations follow:

[V12,T3] = [V23,T1] = [V13,T2] = 0 . (155)

The representations in Eqs. (150) and (152) allow to recast Eq. (148) as separate SRG flow equations for the two- and
three-body interactions [21]:

dVi j

ds
=
⇥⇥

Ti j,Vi j
⇤
,Ti j + Vi j

⇤
, (156)

dV123

ds
= [[T12,V12] ,V31 + V23 + V123]

+ [[T31,V31] ,V12 + V23 + V123]
+ [[T23,V23] ,V12 + V31 + V123]
+ [[Trel,V123] ,Hs] . (157)

Equation (156) follows directly from representing Eq. (148) in a two-body basis for the subsystem consisting of
particles i and j. In this case the kinetic energy only consists of the term Ti j and three-body interactions do not
contribute. Eq. (157) can then be derived by representing Eq. (148) including all terms of the Hamiltonian in the three-
body basis, making use of the commutator relations (155) and the flow equation (156) for the two-body interactions.

Equation (157) demonstrates explicitly that 3N forces are being induced even if they are initially absent at s = 0
or � = 1, respectively. The same is true for all higher-body forces. That means, for maintaining unitarity for a
N-body system, in general N � 1 flow equations for the two-body to N-body forces need to be solved. In practice this
hierarchy of equations is typically truncated at the three-body level. Some attempts to extend it to four-body forces
have been pursued [285], but reaching su�ciently large model spaces is currently still out of reach. A more promising
and feasible approach for dealing with higher-body forces seems to be a more suitable choice of generators which
only induce weak higher-body interactions. This is work in progress.

Compared to Eq. (148), the system of di↵erential equations (156) and (157) has the important advantage that terms
resulting from spectator particles in two-body interaction processes have been eliminated explicitly. That means the
flow equation for Vi j only involves particles i and j, whereas in the evolution equation for V123 every term on the
right hand side involves interaction processes involving all three particles. The flow equation (156) can be easily
represented in two-body partial-wave bases by inserting complete sets of states. For example, for Vi j = V12 (see

62

 observables are conserved due to unitarity of transformation 

•    separate SRG flow equations for NN (YN) and 3N interactions:

no disconnected terms in    : dangerous delta functions are cancelled
dV123

ds
⇒

Eqs.(1)

• Eqs.(1) are solved by projecting on a partial-wave decomposed Jacobi-momentum basis 
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SRG evolution of NN, YN

• :  width of the band-diagonal structure of  in p-spaceλ = (4μ2/s)1/4, [λ] = [p] λ ∼ V
(S.K. Bogner et al. PRC 75 (2007))

NN: χN2LO(500)

 N2LO(500)

YN: χNLO19(650)
( HL et al EPJA 8 (2020) )

 1.6 [fm−1] 3.0 [fm−1] NLO19(500)
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SRG evolution of V123(pqα, p′￼q′￼α′￼)

(Jπ, T ) = (3/2+,1)

(Jπ, T ) = (1/2+,1)

(Jπ, T ) = (9/2+,1)

(Jπ, T ) = (7/2+,1)

(Jπ, T ) = (5/2+,1)
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SRG-evolved V123(ξ′ , ξ)

(Jπ, T ) = (3/2−,1)

(Jπ, T ) = (1/2−,1)

(Jπ, T ) = (9/2−,1)

 N2LO(550)

ξ′ 

(Jπ, T ) = (7/2−,1)

(Jπ, T ) = (5/2−,1)

• hyperradius: ξ2 = p2 +
3
4

q2; tanθ =
2p

3q
, θ =

π
12

; α = α′￼= 1 ⇒ V123 = V123(ξ′￼, ξ)

3N:  χN2LO(550)

ξ′￼[fm−1] ξ′￼[fm−1] ξ′￼[fm−1] ξ′￼[fm−1] ξ′￼[fm−1]
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 with E(3H) χN2LO(500)

3N: χN2LO(500)
cD = − 1.28, cE = − 0.38

SRG is approximately unitary if higher-body forces are omitted 

contributions from the SRG-induced and (bare) chiral 3N forces are comparable

3H
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Results for A = 3 − 6

                   


    

                

  

                      

                                 

3H

4He

6Li(1+)

−8.482−8.477

−28.57 −28.72

−32.19(20)

−25.85

−7.92

J−NCSM F−Y*

2.81(7)

3N + 2N :   χN2LO(500)

N2LO(500) N2LO(500) + 3N

Ex(6Li, 3+)

−28.77(5)

2.16(7)

 P. Maris et. al., PRC 103. 054001*

2.19

−31.99

−28.296

−8.482

Exp .
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Impact of YN interactions on BΛ

• NLO13 and NLO19 are almost phase equivalent

possible contribution of chiral YNN force• BΛ(NLO19) > BΛ(NLO13)

4.5 E↵ects of the YN NLO13 and NLO19 on light hypernuclei

(a) (b)

(c) (d)

(e)

Figure 4.27: ⇤-separation energies �YN , (a) 4
⇤He(0+), (b) 4

⇤He(1+), (c) 5
⇤He( 1

2
+), (d) 7

⇤Li(1/2+), (e) 7
⇤Li(3/2+)

as functions of SRG-YN flow parameter �YN . Black lines with grey bands represent experimental B⇤ and
the uncertainties, respectively. Calculations are based on the chiral SMS N4LO+(450) with the SRG-NN
evolution parameter of �NN = 1.6 fm-1 in combination with the YN-NLO13 (red solid lines) and YN-NLO19
(dashed blue lines) for four regulators, ⇤Y = 500 (triangles), 550 (stars), 600 (crosses) and 650 (circles) MeV.

71

4.5 E↵ects of the YN NLO13 and NLO19 on light hypernuclei

(a) (b)

(c) (d)

(e)

Figure 4.27: ⇤-separation energies �YN , (a) 4
⇤He(0+), (b) 4

⇤He(1+), (c) 5
⇤He( 1

2
+), (d) 7

⇤Li(1/2+), (e) 7
⇤Li(3/2+)

as functions of SRG-YN flow parameter �YN . Black lines with grey bands represent experimental B⇤ and
the uncertainties, respectively. Calculations are based on the chiral SMS N4LO+(450) with the SRG-NN
evolution parameter of �NN = 1.6 fm-1 in combination with the YN-NLO13 (red solid lines) and YN-NLO19
(dashed blue lines) for four regulators, ⇤Y = 500 (triangles), 550 (stars), 600 (crosses) and 650 (circles) MeV.

71

4.5 E↵ects of the YN NLO13 and NLO19 on light hypernuclei

(a) (b)

(c) (d)

(e)

Figure 4.27: ⇤-separation energies �YN , (a) 4
⇤He(0+), (b) 4

⇤He(1+), (c) 5
⇤He( 1

2
+), (d) 7

⇤Li(1/2+), (e) 7
⇤Li(3/2+)

as functions of SRG-YN flow parameter �YN . Black lines with grey bands represent experimental B⇤ and
the uncertainties, respectively. Calculations are based on the chiral SMS N4LO+(450) with the SRG-NN
evolution parameter of �NN = 1.6 fm-1 in combination with the YN-NLO13 (red solid lines) and YN-NLO19
(dashed blue lines) for four regulators, ⇤Y = 500 (triangles), 550 (stars), 600 (crosses) and 650 (circles) MeV.

71

4.5 E↵ects of the YN NLO13 and NLO19 on light hypernuclei

(a) (b)

(c) (d)

(e)

Figure 4.27: ⇤-separation energies �YN , (a) 4
⇤He(0+), (b) 4

⇤He(1+), (c) 5
⇤He( 1

2
+), (d) 7

⇤Li(1/2+), (e) 7
⇤Li(3/2+)

as functions of SRG-YN flow parameter �YN . Black lines with grey bands represent experimental B⇤ and
the uncertainties, respectively. Calculations are based on the chiral SMS N4LO+(450) with the SRG-NN
evolution parameter of �NN = 1.6 fm-1 in combination with the YN-NLO13 (red solid lines) and YN-NLO19
(dashed blue lines) for four regulators, ⇤Y = 500 (triangles), 550 (stars), 600 (crosses) and 650 (circles) MeV.

71

4.5 E↵ects of the YN NLO13 and NLO19 on light hypernuclei

(a) (b)

(c) (d)

(e)

Figure 4.27: ⇤-separation energies �YN , (a) 4
⇤He(0+), (b) 4

⇤He(1+), (c) 5
⇤He( 1

2
+), (d) 7

⇤Li(1/2+), (e) 7
⇤Li(3/2+)

as functions of SRG-YN flow parameter �YN . Black lines with grey bands represent experimental B⇤ and
the uncertainties, respectively. Calculations are based on the chiral SMS N4LO+(450) with the SRG-NN
evolution parameter of �NN = 1.6 fm-1 in combination with the YN-NLO13 (red solid lines) and YN-NLO19
(dashed blue lines) for four regulators, ⇤Y = 500 (triangles), 550 (stars), 600 (crosses) and 650 (circles) MeV.

71

NN:SMS +(450)N4LO4
ΛHe(1+)

5
ΛHe(1/2+)

4
ΛHe(0+)

7
ΛLi(1/2+)

( R. Wirth et al  PRL (2014,2016), PRC(2018) )

• NLO13 leads to a stronger    transition    manifest in higher-body observables ΛN − ΣN

6 MeV

2 MeV

•     is strongly dependent on            contribution of SRG-induced YNN force is significant BΛ λYN

5 MeV (HL et al  EPJA (2020))

(J.Haidenbauer et al NPA 915 2019))
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Impact of an increased  on  spectrumBΛ(3
ΛH) 7

ΛLi
• Choose  to reproduce: λYN BΛ(5

ΛHe) = 3.12 ± 0.02 MeV

BΛ(3
ΛH) = 0.13 ± 0.05 MeV (up to 2019: NLO13, NLO19)

= 0.41 ± 0.12 MeV   (STAR 2019: FITA, FITB, FITC)

overall effect of an increased  on  spectrum is smallBΛ(3
ΛH) 7

ΛLi

4.6 Implications of an increased B⇤(3
⇤H)

Figure 4.32: Energy spectra of 7
⇤Li and 6Li. Same NN and YN interactions as in ]. Calculations are based on

chiral SMS N4LO+(450) with �NN = 1.6 fm-1 and the YN NLO13, NLO19 and Fit A-C interactions for a
range of regulator ⇤Y = 500 � 650 MeV regulator. The experimental values are taken from [8, 11, 126].

and �Ē(0+) to the chosen YN interaction indicates the similarity of the overall strength of all
employed potentials. Moreover, the main di↵erences among these NLO YN potentials should arise
mostly from their spin dependence. As a result, one finds that the doublet levels shift relative to
the centroid energies and depend strongly on the interactions employed. Finally, the grey bands in
Fig. 4.32 represent the dependence of the results on the chiral regulator ⇤Y , which are rather sizable
for most of the energy levels. This possibly indicates a large influence of chiral 3BFs on the levels.
Also, the NLO13 and NLO19 lead to slightly di↵erent predictions further reinforcing that 3BFs
are non-negligible for the excitation energies. Let us further stress that the P-wave interactions of
all considered NLO forces are by construction identical and small. We found that neglecting P-
and higher partial waves in the interactions changes the energies only marginally, well within our
regulator dependence.

In general all of the considered interactions qualitatively reproduce the 7
⇤Li spectrum. Quant-

itatively, however, none of the interactions is able to describe the experiment. For example, we
find that the predicted 5/2+ state of 7

⇤Li is located above the 3+ state of 6Li whereas the ordering
is opposite for the experimental values. While the two potentials NLO13 and NLO19 predicts the
correct splittings of the two lowest doublets, the new fits A to C, however, further increase the
splittings bringing them away from the experimental values. Nevertheless the deviations are minor
when taking into account the possible contributions from 3BFs. In any case, the result show that
changes of singlet scattering length (and consequently the hypertriton binding energies) indeed
a↵ect the spectra of p-shell hypernuclei. However, the changes are moderate and, therefore, the
separation energy and spectrum remains qualitatively consistent with experiment for the new fits.

79

2.83

2.16
NN+3NF

   is used to fix relative strength of spin singlet/triplet  interactionBΛ(3
ΛH) ΛN

( HL et al PLB (2020)

(J.Haidenbauer et al NPA 915 2019))
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Summary

• Develop ab initio Jacobi NCSM for light nuclei & hypernuclei

‣ study  nuclei using chiral NN & 3N at A = 3 − 6 N2LO
 accurate prediction for the binding and first excitation energies

‣ investigate   hypernuclei using chiral YN NLO13 & NLO19 potentialsA = 4 − 7 Λ

 SRG-YN evolution strongly affects the -separation energiesΛ
 difference in NLO13 & NLO19 predictions is attributed to contribution of 3BFs 

                   Thank you for the attention!

• On going project: inclusion of SRG-induced (chiral) YNN forces

using information on light hypernuclei to constrain YN interactions
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Correlation of the -separation energiesΛ

•  of different hypernuclei computed for a same range of  are strongly correlated BΛ λYN

4.4 Correlations of ⇤-separation energies

(a) (b)

(c) (d)

(e) (f)

Figure 4.26: Correlations of ⇤-separation energies for a wide range of flow parameters �YN of 5
⇤He and (a)

3
⇤H, (b) the 0+ state of 4

⇤He (red) and 4
⇤H (blue), (c) the 1+ state of 4

⇤He (red) and 4
⇤H (blue), (d) 6

⇤He (red) and
6
⇤Li (blue), (e) 7

⇤Li( 1
2
+
, 0) and (f) 7

⇤Li( 3
2
+
, 0). The error bars represent numerical uncertainties which are small

in most of the cases. The experimental ⇤-separation energy for 5
⇤He is from [6]. The results for other systems

are taken from: (a) [6], (b)-(c) [123] for 4
⇤He (black asterisk) and 4

⇤H (grey square), (d) [73] for 6
⇤He (black

asterisk) and 6
⇤Li (grey square), (e) [6] (emulsion experiments) and (f) [133].
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3
ΛH(1/2+) 4

ΛH/4
ΛHe(0+)

7
ΛLi(1/2+)

4
ΛH/4

ΛHe(1+)

Idaho- (500)


YN-NLO19(600)

N3LO

minimize effect of  YNN forces by tuning  so that a particular hypernucleus 

 is properly described

λYN (5
ΛHe)

•   of  are well reproduced at  BΛ
3
ΛH, 4

ΛHe(1+), 5
ΛHe and 7

ΛLi λYN = 0.84 fm−1
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YN interactions at NLO

• most of YN LECs are fitted to 36 YN data points  (Λp → Λp, ΣN → ΣN, ΣN → ΛN )
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• 37 YN data, no YN bound state     no partial wave analysis possible 

Hyperon-Nucleon (YN) interactions are poorly constrained

Motivations

• Chiral EFT approach: based on   symmetry   

• Use  to determine and  relative scattering lengths

SU(3)f

BΛ(3
ΛH) = 0.13 ± 0.05 MeV 1S0

3S1

(Haidenbauer et al 2019)       Can we discriminate between the two potentials?   

BΛ(3
ΛH )3a(Λp)

10 J. Haidenbauer et al.: Hyperon-nucleon interaction
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Fig. 4. Differential cross section for Λp scattering at 500 MeV/c and at 633 MeV/c. Same description of curves as in Fig. 1.

0 100 200 300 400 500
plab (MeV/c)

-30

-20

-10

0

10

20

30

δ 
 (d

eg
re

es
)

Λp 3S1

0 100 200 300 400 500
plab (MeV/c)

-30

-20

-10

0

10

20

30

δ 
 (d

eg
re

es
)

Λp 3S1

Fig. 5. 3S1 ΛN phase shift with (left) and without (right) ΣN coupling. Same description of curves as in Fig. 1.
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• Two YN versions at NLO: NLO13 and NLO19 
‣ Almost phase equivalent  
‣ NLO13 predicts a larger   transition potentialΛ − Σ

Λp → Λp

NLO13

NLO19

(Haidenbauer 2019)

• two realisations at NLO: NLO13 and NLO19 
‣ almost phase equivalent
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where the summations over intermediate states are applied.
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4

‣ NLO13 leads to a larger transition potential VΛN−ΣN

NLO13 and NLO19 as a tool to estimate 

 NLO13: J. Haidenbauer et al., NPA 915 (2013), NLO19:  EPJ A 56 (2019) 91 

contribution of YNN force 

(J. Haidenbauer et al. EPJA 56 (2019)) 
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Fig. 4. Differential cross section for Λp scattering at 500 MeV/c and at 633 MeV/c. Same description of curves as in Fig. 1.
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