Removal of the center of mass in nuclei within the Equation of Motion Phonon Method

Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences

gemma.ujf.cas.cz/~p.vesely/

Collaborators: G. De Gregorio, F. Knapp, N. Lo Iudice, P. Papakonstantinou, D. Petrellis.

13th International Spring Seminar on Nuclear Physics perspectives and Challenges, Ischia, May 2022

Motivation

Exact separation of Center of Mass (CM) admixtures in the many-body states very complicated task. We cannot use Jacobi coordinates as in few-body physics. However, low-lying states in all nuclei (including heavy systems) are affected significantly by CM. Important for study of e.g. Pygmy dipole resonances, low-energy E0, E2 transitions etc.

Outline:

- Equation of Motion Phonon Method (EMPM)
- Singular Value Decomposition Method (SVD)
- Center of Mass (CM) Problem
- **Results** demonstration of **SVD** on calculation of energy spectrum of ⁴He within **EMPM**
- **Results EMPM** calculations in ⁴⁰**Ca**, ²⁰⁸**Pb** and their comparison with **STDA**, **SRPA** methods
- **Summary** and Future Plans

Equation of Motion Phonon Method

Intrinsic nuclear Hamiltonian

In Tamm-Dancoff Approximation (TDA) phonons are linear superpositions of 1particle-1hole excitation on top of mean-field Slater determinant (HF)

$$[\boldsymbol{H_{intr}}, \boldsymbol{Q_{\nu}^{\dagger}}]|0\rangle \equiv \hbar\omega_{\nu}\boldsymbol{Q_{\nu}^{\dagger}}|0\rangle$$

 $|v\rangle = \boldsymbol{Q}_{\boldsymbol{\nu}}^{\dagger}|0\rangle, \ \boldsymbol{Q}_{\boldsymbol{\nu}}|0\rangle=0$

 $O_{\nu}^{\dagger} = \sum_{ph} c_{ph}^{\nu} a_p^{\dagger} a_{\hat{h}}$

$$H = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i< j}^{A} V_{ij} = H_{int} + \frac{P^2}{2Am}$$

Hilbert space – divided into subspaces

 $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$

 $\begin{aligned} \mathcal{H}_{0} &= \{ |HF > \} \\ \mathcal{H}_{1} &= \{ O_{\nu_{1}}^{\dagger} |HF > \} \\ \mathcal{H}_{2} &= \{ O_{\nu_{1}}^{\dagger} O_{\nu_{2}}^{\dagger} |HF > \} \\ & \cdot \\ & \cdot \end{aligned}$

 $\mathcal{H}_n = \left\{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} ... O_{\nu_n}^{\dagger} | HF > \right\}$

Equation of Motion Phonon Method

Equation of Motion (EoM) – recursive eq. to solve **eigen-energies** on each **n**-phonon subspace while knowing the (**n-1**)-phonon eigen-energies $\mathcal{H}_0 = \{ |HF > \}$ $< n, \beta \mid \left\{ \left[H, O_{\lambda}^{\dagger}\right] \times \mid n - 1, \alpha > \right\}^{\beta} = \left(E_{\beta}^{(n)} - E_{\alpha}^{(n-1)}\right) < n, \beta \mid \left\{O_{\lambda}^{\dagger} \times \mid n - 1, \alpha > \right\}^{\beta}$ $\mathcal{H}_1 = \{ O_{\nu_1}^\dagger | HF > \}$ $\mathcal{H}_2 = \{O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} | HF > \}$ $\mathcal{H}_n = \left\{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} \dots O_{\nu_n}^{\dagger} | HF > \right\}$ n-phon state (n-1)-phon state **n**-phon state (n-1)-phon state \mathcal{H}_0 \mathcal{H}_2 At the end we **diagonalize** nuclear Hamiltonian in \mathcal{H}_0 0 H₀₂ E⁽⁰⁾ H_{01} (0+1+2+...+n) - phonon basis **E**₁⁽¹⁾ E₂⁽¹⁾ H12 H₀₁ H₁₃ \mathcal{H}_1 $H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i < i}^{N} V_{ij} = H_{int} + \frac{P^2}{2Am}$ **E**_{n1}⁽¹⁾ E₁⁽²⁾ 0 Hamiltonian represented in E₂⁽²⁾ H₂₀ H23 H₂₁ multiphonon basis \mathcal{H}_2 E,2(2) 0 E₁⁽³⁾ $H_{intr} = \sum_{n=\alpha}^{\infty} E_{\alpha}^{n} |n, \alpha\rangle \langle n, \alpha| + \sum_{n=1}^{\infty} |n', \alpha'\rangle \langle n', \alpha'| H_{intr} |n, \alpha\rangle \langle n, \alpha|$ 0 H_{31} H₃₂

Center of Mass Problem

Factorization of CM in Hamiltonian

$$H = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i < j}^{A} V_{ij} = H_{int} + \frac{P^2}{2Am}$$

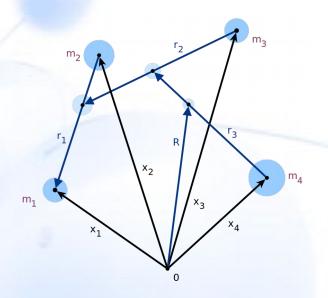
Factorization of CM in wave function

 $\psi(\boldsymbol{R},\boldsymbol{r}) = \varphi_{\boldsymbol{C}\boldsymbol{M}}(\boldsymbol{R})\chi_{\boldsymbol{i}\boldsymbol{n}\boldsymbol{t}}(\boldsymbol{r})$

For exact separation of the CM in w.f. - **Jacobi coordinates** However, in **many-body** methods it is **not achievable** to work with these coordinates.

In methods which are based on the mean field:

- central potential with fixed origin to which particle motion is reffered Slater determinants
- exact factorization of CM is not possible (finite model spaces)
- wave functions and effective Hamiltonians are not translationally invariant
- CM spurious states appear in the energy spectra
- CM problem is inherently present in all models based on the mean field

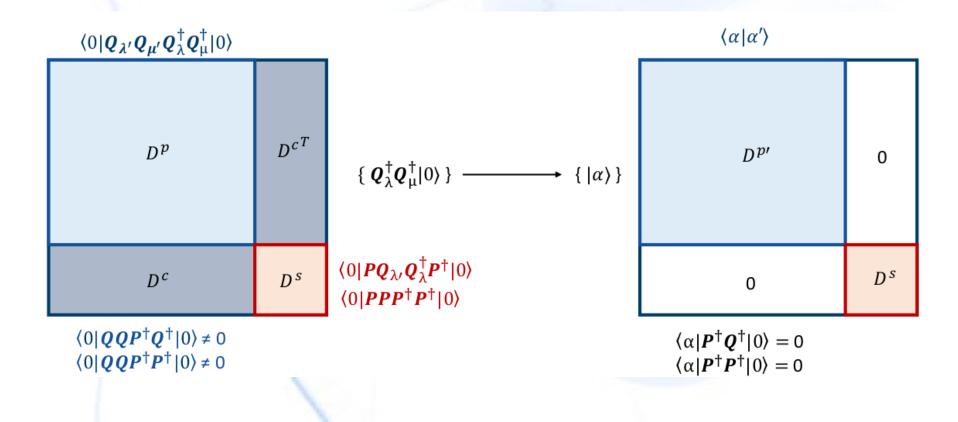


Singular Value Decomposition

G. De Gregorio, F. Knapp, N. Lo Iudice, P. Vesely, Phys. Lett. B 821, 136636 (2021)

Demonstration of extraction of **CM spuriosity** in **2-phonon** space: **Overlap matrix D** among all 2-phonon states. There is a subspace of 2-phonon configurations affected by spuriosity.

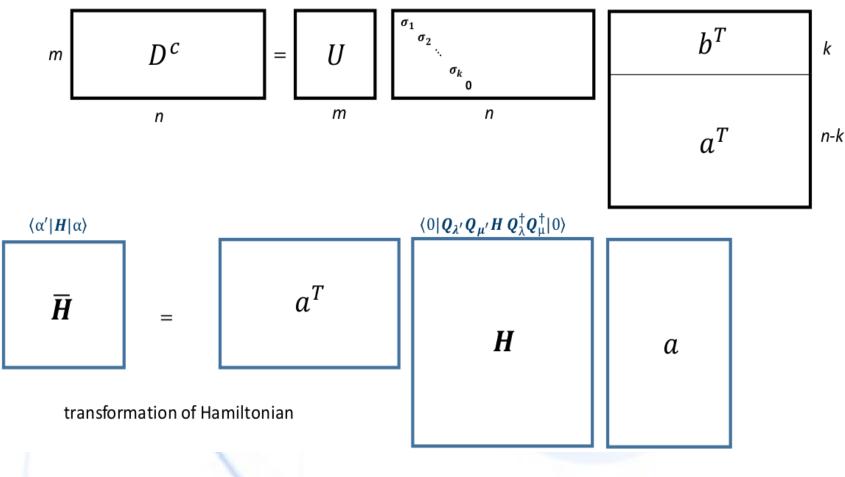
SVD acts on the D^c submatrix – transformation to **separate** spurious and spurious-free **subspaces**.



Singular Value Decomposition

G. De Gregorio, F. Knapp, N. Lo Iudice, P. Vesely, Phys. Lett. B 821, 136636 (2021)

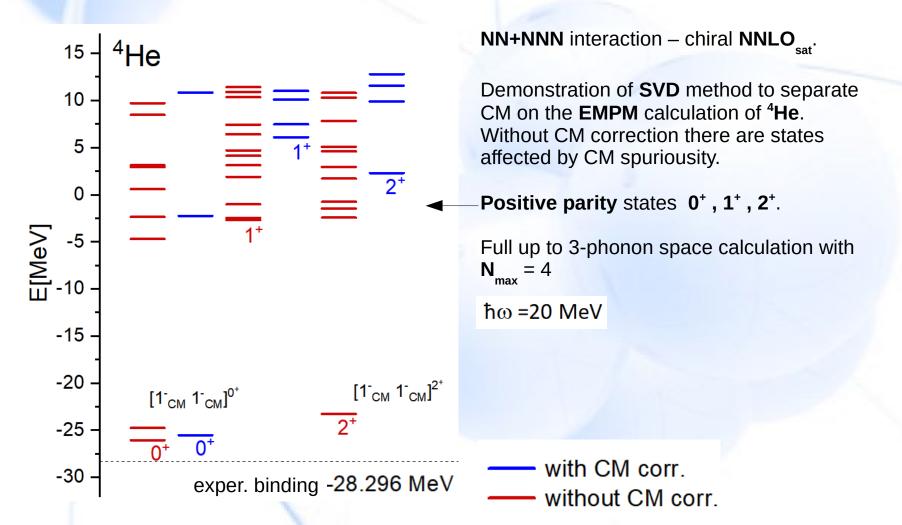
Singular value decomposition of real $m \ge n$ matrix $D^c : D^c = U \ge V^T$, where $(m \ge m) U$ and $(n \ge n) V$ are orthogonal matrices right singular vectors V corresponding to zero singular values span the null space(kernel) of D^c $D^c a = 0 \iff$ orthogonality condition m



Results - CM removal in ⁴He

G. De Gregorio, F. Knapp, N. Lo Iudice, P. Vesely, **Phys. Lett. B 821**, 136636 (2021), **Phys. Rev. C 105**, 024326 (2022).

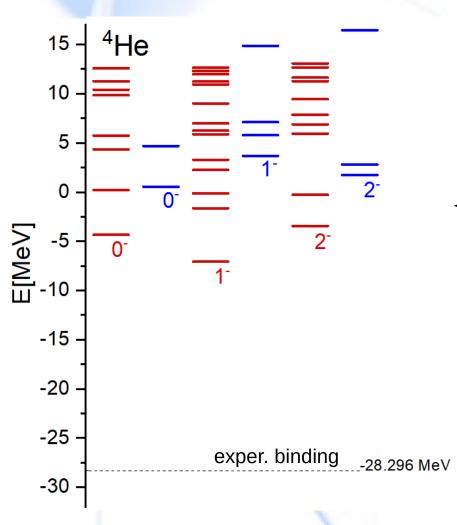
Calculation of ⁴He in 0+1+2+3 phonon space.



Results - CM removal in ⁴He

G. De Gregorio, F. Knapp, N. Lo Iudice, P. Vesely, **Phys. Lett. B 821**, 136636 (2021), **Phys. Rev. C 105**, 024326 (2022).

Calculation of ⁴He in 0+1+2+3 phonon space.



NN+NNN interaction - chiral NNLO_{sat}.

Demonstration of **SVD** method to separate CM on the **EMPM** calculation of ⁴He. Without CM correction there are states affected by CM spuriousity.

— Negative parity states 0⁻, 1⁻, 2⁻.

Full up to 3-phonon space calculation with $N_{max} = 4$

ħω =20 MeV

with CM corr.
without CM corr.

Results - comparison EMPM, STDA, iv E1 dipole strength in ⁴⁰Ca SRPA

N_{max} = 6, NN interaction: UCOM

Preliminary

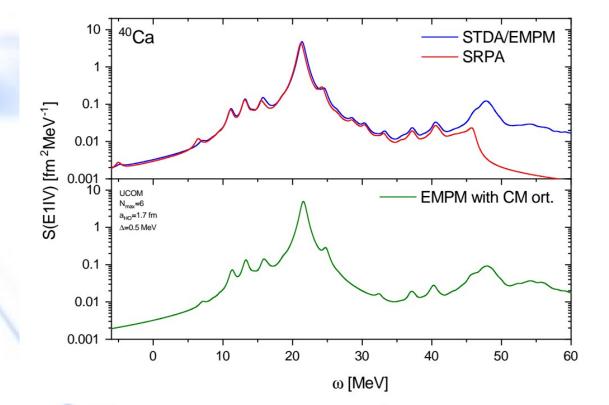
SRPA results not far from **STDA** (STDA/SRPA results by P. Papakonstantinou)

In **EMPM** the **CM correction** can be done \rightarrow usually removes some of low lying states (they have **spurious** character)

EMPM in 1+2 phonon space without CM correction

fully **equivalent** to **STDA**

Advantage of EMPM to STDA/SRPA is that in EMPM can be done CM correction.



Results - comparison EMPM, STDA, E0 dipole strength in ⁴⁰Ca SRPA

N_{max} = 6, NN interaction: UCOM

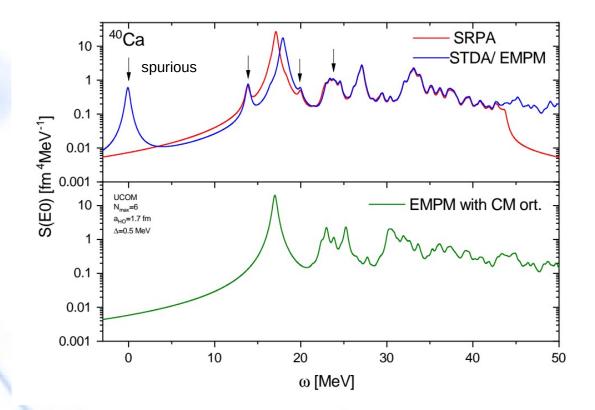
SRPA results not far from **STDA** (STDA/SRPA results by P. Papakonstantinou)

In **EMPM** the **CM correction** can be done \rightarrow usually removes some of low lying states (they have **spurious** character)

EMPM in 1+2 phonon space without CM correction

fully **equivalent** to **STDA**

Advantage of EMPM to STDA/SRPA is that in EMPM can be done CM correction.



Preliminary

Results - comparison EMPM, STDA, E2 dipole strength in ⁴⁰Ca SRPA

N_{max} = 6, NN interaction: UCOM

Preliminary

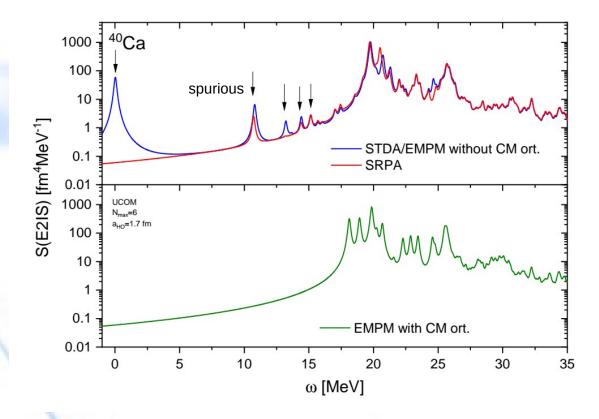
SRPA results not far from **STDA** (STDA/SRPA results by P. Papakonstantinou)

In **EMPM** the **CM correction** can be done \rightarrow usually removes some of low lying states (they have **spurious** character)

EMPM in 1+2 phonon space without CM correction

fully **equivalent** to **STDA**

Advantage of EMPM to STDA/SRPA is that in EMPM can be done CM correction.



Results - ivE1 in ²⁰⁸Pb

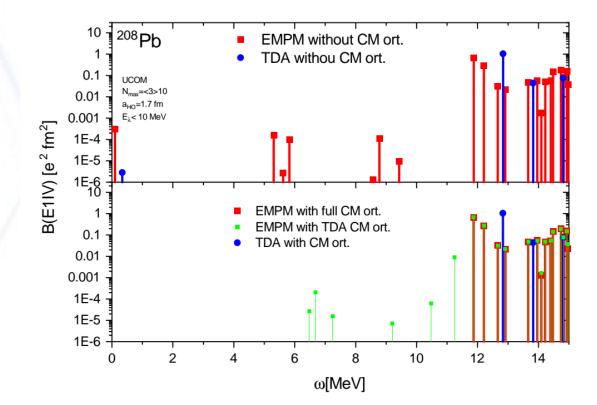
iv E1 dipole transitions in ²⁰⁸Pb, NN interaction: UCOM

Preliminary

EMPM – up to 2-phonon

In low-energy spectrum **Pygmy dipole** resonance - **CM correction** crucial. **3 modes** in calc.: - **without CM** correction

- TDA with CM correction, EMPM without CM correction
- TDA+EMPM with CM correction (SVD method applied)



Summary

- Discussion of Equation of Motion Phonon Method
- Discussion of Center of Mass problem in many-body method
- Introduction of Singular Value Decomposition Method for CM factorization
- Demonstration of SVD within EMPM on the calculation of energy spectrum in ⁴He
- EMPM calculations of ⁴⁰Ca, ²⁰⁸Pb and comparison with STDA, SRPA methods
- Full equivalence of EMPM and STDA demonstrated
- Our plans:
- Extension of SVD method for quasiparticle variant of EMPM
- Removal of spurious CM and particle number N modes from energy spectra
- Study of structure of open shell nuclei ^{18,20}O, ^{42,44,46}Ca

Thank you for your attention!!