Few-Body Physics in Finite Volume

Sebastian König, NC State University

13th International Spring Seminar on Nuclear Physics

May 19, 2022

Yu, Lee, SK in preparation Yapa, SK, arXiv:2201.08313 (2022)

Nuclear physics in a box

Nuclear physics in a box

Nuclear physics in a box

Relevance of finite-volume relations

Lattice simulations

D. Lee

- **lattice QCD:** few baryons, small volumes
- lattice EFT: larger volumes, many more particles

Beane et al., Prog. Part. Nucl. Phys. **66** 1 (2011); ... Epelbaum et al., PRL **104** 142501 (2010), ...

Relevance of finite-volume relations

Lattice simulations

D. Lee

- **lattice QCD:** few baryons, small volumes
- lattice EFT: larger volumes, many more particles

Harmonic oscillator calculations

- infrared basis extrapolation
- Busch formula: extraction of scattering phase shifts

Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020);...

Beane et al., Prog. Part. Nucl. Phys. **66** 1 (2011); ... Epelbaum et al., PRL **104** 142501 (2010), ...

More et al, PRC 87 044326 (2013); ...

Relevance of finite-volume relations

Lattice simulations

D. Lee

More et al, PRC 87 044326 (2013); ...

- **lattice QCD:** few baryons, small volumes
- lattice EFT: larger volumes, many more particles

Harmonic oscillator calculations

- infrared basis extrapolation
- Busch formula: extraction of scattering phase shifts

Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020);...

As direct tool to study nuclear states and reactions

р. З

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies

Lüscher formalism

- physical properties encoded in the volume-dependent energy levels
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

- (E)FTs can be matched in their overlapping regime of applicability
 - "analytic continuation" of theories

recent application: Detmold+Shanahan, PRD **103** 074503 (2021)

• specifically, the Chiral EFT (Lattice) input can inform Halo/Cluster EFT (FV DVR)

Outline

Introduction Charged particles Volume extrapolation

Part I

Volume dependence of charged-particle bound states

H. Yu, D. Lee, SK, in preparation

Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

$$V_L({f r}) = \sum_{{f n} \in \mathbb{Z}^3} V({f r} + {f n}L)$$

• necessary condition for this: $R = \mathrm{range}(V) \ll L$

Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

$$V_L({f r}) = \sum_{{f n} \in \mathbb{Z}^3} V({f r} + {f n}L)$$

• necessary condition for this: $R = \operatorname{range}(V) \ll L$

Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

$$V_L({f r}) = \sum_{{f n} \in \mathbb{Z}^3} V({f r} + {f n}L)$$

• necessary condition for this: $R = \operatorname{range}(V) \ll L$

Bound-state volume dependence

• finite volume affects the binding energy of states: $E_B \rightarrow E_B(L)$

$$\Delta E_B(L) \sim - \left| \gamma_\infty
ight|^2 ext{exp}ig(- \kappa L ig) / L + \cdots$$
 , $oldsymbol{\gamma}_\infty \, = \, ext{ANC}$

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence
 - binding momentum κ , asymptotic normalization constant (ANC) γ_{∞}
- in general, the prefactor is a polynomial in $1/\kappa L$

SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

- ANCs describe the bound-state wavefunction at large distances
 - important input quantities for reaction calculations

Charged-particle systems

• most systems of interest in nuclear physics involve charged particles

Bound-state volume dependence

• finite volume affects the binding energy of states: $E_B \rightarrow E_B(L)$

$$\Delta E_B(L) \sim - \left| \gamma_\infty
ight|^2 ext{exp}ig(- \kappa L ig) / L + \cdots$$
 , $oldsymbol{\gamma}_\infty \, = \, ext{ANC}$

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence
 - binding momentum κ , asymptotic normalization constant (ANC) γ_{∞}
- in general, the prefactor is a polynomial in $1/\kappa L$

SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

- ANCs describe the bound-state wavefunction at large distances
 - important input quantities for reaction calculations

Charged-particle systems

• most systems of interest in nuclear physics involve charged particles

Charged-particle systems

- most systems of interest in nuclear physics involve charged particles
- nonrelativistic description with short-range interaction + long-range Coulomb force

$$H + H_0 + V + rac{V_C}{r} \ , \ V_C(r) = rac{\gamma}{r} = rac{2\mulpha Z_1 Z_2}{r}$$

• charged bound-state wavefunctions have Whittaker tails:

$$\psi_\infty(r)\sim W_{-ar\eta,rac{1}{2}}(2\kappa r)/r\sim rac{{
m e}^{-\kappa r}}{(\kappa r)^{ar\eta}}$$

- ► these govern the asymptotic volume dependence
- additional suppression at large distances
- depends on Coulomb strength: $ar\eta=\gamma/(2\kappa)$
- ightarrow for lpha-lpha system: $\gammapprox 0.55~{
 m fm}^{-1}$
- details worked out by graduate student Hang Yu

$\textbf{Coulomb} = \textbf{exp} \rightarrow \textbf{Whittaker function?}$

Coulomb = exp \rightarrow Whittaker function?

Yes, but not quite so simple...

Periodic Coulomb potential

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - ${\scriptstyle \blacktriangleright}$ converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

Periodic Coulomb potential

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - \blacktriangleright converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!
- \hookrightarrow cut off at box boundary, grow Coulomb tail with L

Charged-particle volume dependence

- exact form in one spatial dimension can be found from boundary condition
- 3D derivation is more involved due to nontrival geometry

$$\Delta E(L) = -\frac{3\gamma_{\infty}^2}{\mu L} \left[W'_{-\bar{\eta},\frac{1}{2}}(\kappa L) \right]^2 + \Delta_C(L) + \Delta'_C(L) + \mathcal{O}\left[e^{-\sqrt{2}\kappa L} \right]$$
(3D)

- this result is for S-wave $(A_1^+$ cubic rep.) states
- based on two-step procedure: first account for Coulomb potential in PT
- surface integrals lead to additional power-law correction terms
 - ► first term can be explicitly evaluated numerically
 - second term is more tricky, depends on short-range potential

Charged-particle volume dependence

- exact form in one spatial dimension can be found from boundary condition
- 3D derivation is more involved due to nontrival geometry

$$\Delta E(L) = -\frac{3\gamma_{\infty}^2}{\mu L} \left[W'_{-\bar{\eta},\frac{1}{2}}(\kappa L) \right]^2 + \Delta_C(L) + \Delta'_C(L) + \mathcal{O}\left[e^{-\sqrt{2}\kappa L} \right]$$
(3D)

- this result is for S-wave $(A_1^+$ cubic rep.) states
- based on two-step procedure: first account for Coulomb potential in PT
- surface integrals lead to additional power-law correction terms
 - first term can be explicitly evaluated numerically
 - second term is more tricky, depends on short-range potential

Asymptotic bounds

- dominant correction = $\mathcal{O}\Big(\frac{ar{\eta}}{(\kappa L)^2}\Big) imes$ leading volume dependence
- second term has the same asymptotic dependence
 - ▶ but numerically observed to be smaller, practially not relevant

Example

- consider two particles (in three dimensions) with Coulomb strength $\gamma = 3.0$
 - bound state generated by short-range Gaussian potential
- determine binding momentum κ and ANC γ_∞ from volume dependence

• numerical values: $\kappa=0.8611$, $\gamma_{\infty}=8.78$

Hang Yu, Dean Lee, SK, in preparation (2021)

- from finite-volume fit: $\kappa = 0.8609$, $\gamma_{\infty} = 8.72$
- simple exponential fit would give $\kappa = 1.014$ instead

Part II

Volume extrapolation via eigenvector continuation

N. Yapa, SK, arXiv:2201.08313 (2022)

Volume extrapolation

 $L_1 \longrightarrow L_2 \gg L_1$

Why?

Lüscher formalism

- finite volume \rightarrow discrete energy levels $\rightarrow p \cot \delta_0(p) = \frac{1}{\pi L} S(E(L)) \rightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

Lüscher formalism

- finite volume ightarrow discrete energy levels $ightarrow p \cot \delta_0(p) = rac{1}{\pi L} S(E(L))
 ightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

Lüscher formalism

- finite volume ightarrow discrete energy levels $ightarrow p \cot \delta_0(p) = rac{1}{\pi L} S(E(L))
 ightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

Lüscher formalism

- finite volume ightarrow discrete energy levels $ightarrow p \cot \delta_0(p) = rac{1}{\pi L} S(E(L))
 ightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

 direct correspondence between phase-shift jump and avoided crossing only for twobody systems, but the spectrum signature carries over to few-body systems
 Klos, SK et al., PRC 98 034004 (2018)

Eigenvector continuation

Many physics problems are tremendously difficult...

- huge matrices, possibly too large to store
 - ever more so given the evolution of typical HPC clusters
- most exact methods suffer from exponential scaling
- interest only in a few (lowest) eigenvalues

Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)

Introducing eigenvector continuation

D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL $\mathbf{121}$ 032501 (2018)

- novel numerical technique, broadly applicable
 - ► emulators, perturbation theory, ... SK et al., PLB 810 135814 (2020); Demol, ..., SK et al., PRC 101 041302 (2020); ...
- amazingly simple in practice
- special case of "reduced basis method" (RBM)

Bonila et al., arXiv:2203.05282; Melendez et al., arXiv:2203.05528

KDE Oxygen Theme

General idea

Scenario

Frame et al., PRL **121** 032501 (2018)

- consider physical state (eigenvector) in a large space
- parametric dependence of Hamiltonian H(c) traces only small subspace

Procedure

- calculate $|\psi(c_i)
 angle$, $i=1,\ldots N_{
 m EC}$ in "training" regime
- solve generalized eigenvalue problem $H|\psi
 angle=\lambda N|\psi
 angle$ with
 - $H_{ij} = \langle \psi_i | H(c_{ ext{target}}) | \psi_j
 angle$
 - $N_{ij}=\langle \psi_i|\psi_j
 angle$

Prerequisite

• smooth dependence of H(c) on c

Result

- construction of highly efficient, tailored variational basis
- enables analytic continuation of $|\psi(c)
 angle$ from $\{c_i\}$ to $c_{ ext{target}}$

Finite-volume eigenvector continuation

Naive setup

- consider states $|\psi_{L_i}
 angle$ at volume L_i
- want to use these to extrapolate via EC to target volume L_{st}
- to that end, we'd consider Hamiltonian and norm matrices like this:

$$egin{aligned} H_{ij} &= \langle \psi_{L_i} | oldsymbol{H}_{L_*} | \psi_{L_j}
angle \ N_{ij} &= \langle \psi_{L_i} | \psi_{L_j}
angle \end{aligned}$$

Finite-volume eigenvector continuation

Naive setup

- consider states $|\psi_{L_i}
 angle$ at volume L_i
- want to use these to extrapolate via EC to target volume L_{st}
- to that end, we'd consider Hamiltonian and norm matrices like this:

$$egin{aligned} H_{ij} &= \langle \psi_{L_i} | oldsymbol{H}_{L_*} | \psi_{L_j}
angle \ N_{ij} &= \langle \psi_{L_i} | \psi_{L_j}
angle \end{aligned}$$

However...

All the $\ket{\psi_{L_i}}$ are defined in different Hilbert spaces!

- parametric dependence now not only in the Hamiltonian...
- ...but inherent in the basis
- need to generalize EC to deal with this scenario
- work together with graduate student Nuwan Yapa

Dilatations

- consider a function f with period L, $f \in \mathcal{H}_L$
- this can be mapped onto a function with period L' by means of a dilatation:

$$({m D}_{L,L'}f)(x)=\sqrt{{L\over L'}}\,figg({L\over L'}xigg)$$

• this provides a bijection between the Hilbert spaces \mathcal{H}_L and \mathcal{H}'_L

Example: periodic bound-state wavefunction

Periodic matching

- consider the union of all periodic Hilbert spaces: $\mathcal{H} = \bigcup_{L>0} \mathcal{H}_L$
 - not a Hilbert space with normal pointwise addition
- define a new operation for $f\in \mathcal{H}_L$, $g\in \mathcal{H}_{L'}$, L'>L :

$$(f\stackrel{\mathrm{max}}{+}g)(x)=(D_{L,L'}f)(x)+g(x)$$

• similarly, define inner products between different periodicities:

$$\langle f,g
angle_{ ext{max}}=\langle D_{L,L'}f,g
angle_{\mathcal{H}_{L'}}=\int_{-L'/2}^{L'/2}(D_{L,L'}f)(x)^*g(x)\,\mathrm{d}x$$

• together, these make ${\mathcal H}$ a vector space with inner product

Periodic matching

- consider the union of all periodic Hilbert spaces: $\mathcal{H} = \bigcup_{L>0} \mathcal{H}_L$
 - not a Hilbert space with normal pointwise addition
- define a new operation for $f\in \mathcal{H}_L$, $g\in \mathcal{H}_{L'}$, L'>L :

$$(f\stackrel{\mathrm{max}}{+}g)(x)=(D_{L,L'}f)(x)+g(x)$$

• similarly, define inner products between different periodicities:

$$\langle f,g
angle_{ ext{max}}=\langle D_{L,L'}f,g
angle_{\mathcal{H}_{L'}}=\int_{-L'/2}^{L'/2} (D_{L,L'}f)(x)^*g(x)\,\mathrm{d}x$$

• together, these make ${\mathcal H}$ a vector space with inner product

Truncated periodic bases

- let $S_{L,N}$ be a truncated basis of plane-wave states
- then for $\psi \in S_{L,N}$ and $\psi' \in S_{L',N}$, the \mathbb{R}^N inner product of coefficient vectors is the same as $\langle \cdot, \cdot \rangle_{\max}$

Discrete variable representation

Efficient calculation of several few-body energy levels

• use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

- periodic boundary condistions \leftrightarrow plane waves as starting point
- efficient implementation for large-scale calculations
 - handle arbitrary number of particles (and spatial dimensions)
 - numerical framework scales from laptop to HPC clusters
 - ► recent extensions: GPU acceleration, separable interactions

SK et al., PRC **98** 034004 (2018) Dietz, SK et al. arXiv:2109.11356

DVR construction

Basic idea

• start with some initial basis; here: plane waves $\phi_i(x) = \frac{1}{\sqrt{L}} \exp\left(i\frac{2\pi i}{L}x\right)$

• consider
$$(x_k,w_k)$$
 such that $\sum_{k=-N/2}^{N/2-1} w_k \, \phi_i^*(x_k) \phi_j(x_k) = \delta_{ij}$

DVR states

- $\psi_k(x)$ localized at x_k , $\psi_k(x_j) = \delta_{kj}/\sqrt{w_k}$
- note duality: momentum mode $\phi_i \leftrightarrow$ spatial mode ψ_k

DVR basis states

- construct DVR basis in simple relative coordinates
 - because Jacobi coordinates would complicate the boundary conditions
- separate center-of-mass energy (choose $\mathbf{P} = \mathbf{0}$)
- mixed derivatives in kinetic energy operator

- general DVR state for n particles in d dimensions
 - $\blacktriangleright \ |s\rangle = |(k_{1,1}, \cdots, k_{1,d}), \cdots, (k_{n-1,1}, \cdots); \mathrm{spins}\rangle \in B$
- basis size: $\dim B = (2S+1)^n imes N^{d imes (n-1)}$

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s
 angle\in B$, construct $|s
 angle_{\mathcal{A}}=\mathcal{N}\sum\limits_{p\in S_n}\mathrm{sgn}(p)\,D_n(p)|s
 angle$
 - ightarrow then $|s
 angle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}|s
 angle_{\mathcal{A}}=|s
 angle_{\mathcal{A}}$
 - ullet for bosons, leave out $\mathrm{sgn}(p) \rightsquigarrow$ symmetric state
 - + $D_n(p)|s
 angle=$ some other $|s'
 angle\in B$, modulo periodic boundary

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s
 angle\in B$, construct $|s
 angle_{\mathcal{A}}=\mathcal{N}\sum\limits_{p\in S_n}\mathrm{sgn}(p)\,D_n(p)|s
 angle$
 - ightarrow then $|s
 angle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}|s
 angle_{\mathcal{A}}=|s
 angle_{\mathcal{A}}$
 - ightarrow for bosons, leave out $\mathrm{sgn}(p) \rightsquigarrow$ symmetric state
 - + $D_n(p)|s
 angle =$ some other $|s'
 angle \in B$, modulo periodic boundary

This operation partitions the orginal basis!

Reduced basis

- each state appears in at most one (anti-)symmetric combination
 - ▶ no need for expensive symmetry eigenspace determination
- significant reduction of basis size: $N o N_{
 m reduced} pprox N/n!$
- parity (with projector $\mathcal{P}_{\pm} = 1 \pm \mathcal{P}$) can be handled analogously

Two-body proof of concept

- consider a simple two-body system as first example
 - attractive Gaussian interaction: $V(r) = V_0 \exp \left(-\left(rac{r}{R}
 ight)^2
 ight)$, R=2 , $V_0=-4$
- note: cubic finite volume breaks spherical symmetry
 - angular momentum no longer good quantum number
 - ▶ instead: cubic irreducible representations $\Gamma \in A_1, A_2, E, T_1, T_2$
 - ▶ to good approximation, S-wave states $\sim A_1^+$ irrep. (positive parity)

Three-boson resonance

- three bosons with mass m = 939.0 MeV, potential = sum of two Gaussians
- three-body resonance at
 - ▶ -5.31 i0.12 MeV (Blandon et al., PRA 75 042508 (2007))
 - ► -5.96 i0.40 MeV (Fedorov et al., FB Syst. 33 153 (2003)) (potential S-wave projected!)

• avoided crossing well reproduced by FVEC calculation

Three neutrons

• now consider three neutrons with Pionless EFT leading-order interaction

$$V(q,q') = C \, g(q) g(q') \ \ , \ \ g(q) = \exp(-q^{2n}/\Lambda^{2n})$$

- separable super-Gaussian form with n=2 and $\Lambda=250$ MeV
- efficiently implemented within DVR framework

Dietz, SK et al. arXiv:2109.11356

• total number of training data: $3 \times 8 = 24$ (partly covering cubic group multiplets)

Uncertainty quantification

- FVEC uncertainty depends on choice of training data
 - ▶ domain to choose from (note also: extrapolation vs. interpolation)
 - number $N_{\rm EC}$ of training space (controls dimension of FVEC subspace)
- use this dependence to estimate uncertainty
 - calculate initial pool of training data
 - from that pool, consider combinations with fixed $N_{
 m EC}$

Application to two-body system

Uncertainty quantification

- FVEC uncertainty depends on choice of training data
 - ▶ domain to choose from (note also: extrapolation vs. interpolation)
 - number $N_{\rm EC}$ of training space (controls dimension of FVEC subspace)
- use this dependence to estimate uncertainty
 - calculate initial pool of training data
 - \blacktriangleright from that pool, consider combinations with fixed $N_{
 m EC}$

Application to two-body system

Summary and outlook

Volume dependence of charged-particle bound states

- wave function at large distances determines finite-volume energy shift
 - possible to extract asymptotic normalization coefficients
- volume dependence is known for arbitrary angular momentum and cluster states
- infinite-range Coulomb force complicates derivation
- leading volume dependence derived for S-wave states
 - numerical calculation and/or bounds for additional correction terms

Volume extrapolation via eigenvector continuation

- DVR method can handle few-nucleon EFT calculations in large boxes
- extension of EC to handle parametric dependence directly in basis
- justified by periodic matching construction
- makes it possible to extrapolate reliably over large volume ranges
- in progress: application to four-neutron system

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Andis (NCSU)
- D. Lee (Michigan State U.)
- H.-W. Hammer, A. Schwenk, K. Hebeler, A. Tichai (TU Darmstadt)
- A. Ekström (Chalmers U.)
- T. Duguet, V. Somà, M. Frosini (CEA Saclay), P. Demol (KU Leuven)
- K. Fossez (Florida State U.)

... for support, funding, and computing time...

• Jülich Supercomputing Center

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Andis (NCSU)
- D. Lee (Michigan State U.)
- H.-W. Hammer, A. Schwenk, K. Hebeler, A. Tichai (TU Darmstadt)
- A. Ekström (Chalmers U.)
- T. Duguet, V. Somà, M. Frosini (CEA Saclay), P. Demol (KU Leuven)
- K. Fossez (Florida State U.)

... for support, funding, and computing time...

• Jülich Supercomputing Center

...and to you, for your attention!

Backup slides

Higher partial waves

• general result: $\Delta E(L) = \alpha \left(\frac{1}{\kappa L}\right) \times |\gamma_{\infty}|^2 \frac{\mathrm{e}^{-\kappa L}}{\mu L} + \mathcal{O}\left(\mathrm{e}^{-\sqrt{2}\kappa L}\right)$

SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

- prefactor for any bound state is polynomial in $1/(\kappa L)$
- depends in general on irreducible representation of the cubic group

Broken symmetry

• the finite volume breaks the spherical symmetry of the system

- irreducible representations of SO(3) are reducible with respect to O
 - finite subgroup of SO(3) Γ A_1 A_2 E T_1
 - number of elements = 24
 - five irreducible representations

Γ	A_1	A_2	E	T_1	T_2
$\dim \Gamma$	1	1	2	3	3

- S waves contribute only to A_1 , P waves only to T_1
- splitting first starts at D waves: $D^2=T_2^+\oplus E^+$

Higher partial waves

• general result: $\Delta E(L) = \alpha \left(\frac{1}{\kappa L}\right) \times |\gamma_{\infty}|^2 \frac{\mathrm{e}^{-\kappa L}}{\mu L} + \mathcal{O}\left(\mathrm{e}^{-\sqrt{2}\kappa L}\right)$

SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

- prefactor for any bound state is polynomial in $1/(\kappa L)$
- depends in general on irreducible representation of the cubic group

even parity \rightarrow WF profile relaxed \rightarrow less curvarture \rightsquigarrow more deeply bound

even parity \rightarrow WF profile relaxed \rightarrow less curvarture \rightsquigarrow more deeply bound

odd parity \rightarrow WF profile compressed \rightarrow more curvarture \rightsquigarrow less deeply bound

even parity \rightarrow WF profile relaxed \rightarrow less curvarture \rightsquigarrow more deeply bound

N-body setup

• 2- up to N-body interactions, can be local or non-local

$$V_{1 \cdots N}(\mathbf{r}_1, \cdots \mathbf{r}_N; \mathbf{r}_1', \cdots \mathbf{r}_N') = \sum_{i < j} W_{i,j}(\mathbf{r}_i, \mathbf{r}_j; \mathbf{r}_i', \mathbf{r}_j') \mathbb{1}_{\not a, \not j} + \cdots$$

- all with finite range, set $R = \max\{R_{i,j}, \cdots\}$
- assume asymptotically large volume: $L \gg R$

General result

- consider N particles (in d spatial dimensions), all interaction ranges $\leq R$
- separated into clusters \rightsquigarrow set S in configuration space SK + Lee, PLB 779 9 (2018)
- restricted Hamiltonian determines asymptotic wavefunction
- simplest example: A = 1

$$\psi_N^B(\mathbf{r}_1, \cdots \mathbf{r}_N) \propto \psi_A^B(\mathbf{r}_1, \cdots \mathbf{r}_A) \psi_{N-A}^B(\mathbf{r}_{A+1}, \cdots \mathbf{r}_N) \\ \times (\kappa_{A|N-A} r_{A|N-A})^{1-d/2} K_{d/2-1}(\kappa_{A|N-A} r_{A|N-A})$$
(1)

$$\Delta E_N(L) \propto (oldsymbol{\kappa_{A|N-A}}L)^{1-d/2} \ K_{d/2-1}(oldsymbol{\kappa_{A|N-A}}L) \ \sim \expig(-oldsymbol{\kappa_{A|N-A}}Lig)/L^{(d-1)/2}$$

- smallest $\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N B_A B_{N-A})}$ governs volume dependence
- this assumes both clusters to be bound (otherwise: power-law correction factors)