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Harmonic oscillator calculations
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lattice QCD: few baryons, small volumes


lattice EFT: larger volumes, many more particles


Harmonic oscillator calculations

infrared basis extrapolation


Busch formula: extraction of scattering phase shifts


As direct tool to study nuclear states and reactions
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Finite periodic boxes
 


physical system enclosed in finite volume (box)

typically used: periodic boundary conditions

leads to volume-dependent energies

 


 


 


 


 


 


Lüscher formalism

physical properties encoded in the volume-dependent energy levels

infinite-volume S-matrix governs discrete finite-volume spectrum

finite volume used as theoretical tool
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recent application: Detmold+Shanahan, PRD 103 074503 (2021)

EFT matching

EFT A EFT B

observables

finite-volume energy levels
(E)FTs can be matched in their overlapping regime of applicability

specifically, the Chiral EFT (Lattice) input can inform
Halo/Cluster EFT (FV DVR)

"analytic continuation" of theories► 
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Outline
  Introduction ✔

Charged particles

Volume extrapolation
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H. Yu, D. Lee, SK, in preparation

Part I
Volume dependence of charged-particle bound states
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Periodic short-range potentials
implement periodic boundary condition via shifted potentials copies:

necessary condition for this: 

(r) = V (r + nL)VL ∑
n∈Z

3

R = range(V ) ≪ L
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Bound-state volume dependence
finite volume affects the binding energy of states:


,
  = ANC

 


infinite-volume properties determine volume dependence

in general, the prefactor is a polynomial in 

ANCs describe the bound-state wavefunction at large distances

 


Low-energy capture reactions







→ (L)EB EB

Δ (L) ∼ −| exp( − κL)/L + ⋯EB γ∞|2 γ∞

binding momentum ,
asymptotic normalization constant (ANC) ► κ γ∞

1/κL

important input quantities for reaction calculations► 

p + Be → B + γ9 10

α + C → + γ12 16O∗

⋯
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Charged-particle systems
most systems of interest in nuclear physics involve charged particles
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Charged-particle systems
most systems of interest in nuclear physics involve charged particles

nonrelativistic description with short-range interaction + long-range Coulomb force

charged bound-state wavefunctions have Whittaker tails:

details worked out by graduate student Hang Yu





H + + V +  ,   (r) = =H0 VC VC

γ

r

2μαZ1Z2

r

(r) ∼ (2κr)/r ∼ψ∞ W− ,η̄
1

2

e−κr

(κr)η̄

these govern the asymptotic volume dependence► 

additional suppression at large distances► 

depends on Coulomb strength: ► = γ/(2κ)η̄

for  system: ► α − α γ ≈ 0.55 fm−1
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Coulomb = exp  Whittaker function?
 

→

p. 13



Coulomb = exp  Whittaker function?
 Yes, but not quite so simple...




→
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Periodic Coulomb potential
short-range interaction easy to extend periodically:


not possible for Coulomb potential with infinite range!


(r) = V (r + nL)VL ∑
n

trivial for finite-range potental ► V

converging sum, negligible corrections for  falling faster than power law► V
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Periodic Coulomb potential
short-range interaction easy to extend periodically:


not possible for Coulomb potential with infinite range!



cut off at box boundary, grow Coulomb tail with 





(r) = V (r + nL)VL ∑
n

trivial for finite-range potental ► V

converging sum, negligible corrections for  falling faster than power law► V

↪ L
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Charged-particle volume dependence
exact form in one spatial dimension can be found from boundary condition

3D derivation is more involved due to nontrival geometry

this result is for S-wave (  cubic rep.) states

based on two-step procedure: first account for Coulomb potential in PT

surface integrals lead to additional power-law correction terms

ΔE(L) = − + (L) + (L) + O [ ] (3D)
3γ2

∞

μL
[ (κL)]W ′

− ,η̄
1

2

2

ΔC Δ′
C

e− κL2√

A+
1

first term can be explicitly evaluated numerically► 

second term is more tricky, depends on short-range potential► 
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Charged-particle volume dependence
exact form in one spatial dimension can be found from boundary condition

3D derivation is more involved due to nontrival geometry

this result is for S-wave (  cubic rep.) states

based on two-step procedure: first account for Coulomb potential in PT

surface integrals lead to additional power-law correction terms

Asymptotic bounds

dominant correction = 
leading volume dependence

second term has the same asymptotic dependence

ΔE(L) = − + (L) + (L) + O [ ] (3D)
3γ2

∞

μL
[ (κL)]W ′

− ,η̄
1

2

2

ΔC Δ′
C

e− κL2√

A+
1

first term can be explicitly evaluated numerically► 

second term is more tricky, depends on short-range potential► 

O( )×
η̄

(κL)2

but numerically observed to be smaller, practially not relevant► 

p. 17



Hang Yu, Dean Lee, SK, in preparation (2021)

Example
consider two particles (in three dimensions) with
Coulomb strength 

determine binding momentum  and ANC 
from volume dependence

preliminary

numerical values: , 

from finite-volume fit: , 

simple exponential fit would give  instead

γ = 3.0

bound state generated by short-range Gaussian potential► 

κ γ∞

κ = 0.8611 = 8.78γ∞

κ = 0.8609 = 8.72γ∞

κ = 1.014
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Part II
Volume extrapolation via eigenvector continuation
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Volume extrapolation

            →               ≫L1 L2 L1
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Why?
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Finite-volume resonance signatures
Lüscher formalism

finite volume
  discrete energy levels
 
  phase shift

resonance contribution  avoided level crossing


 


 


 


 


 


 


 


 


 


→ → p cot (p) = S(E(L))δ0
1

πL
→

↔
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Klos, SK et al., PRC 98 034004 (2018)

Finite-volume resonance signatures
Lüscher formalism

finite volume
  discrete energy levels
 
  phase shift

resonance contribution  avoided level crossing


 


 


 


 


 


 


 


 


 


direct correspondence between phase-shift jump and avoided crossing only for
two-

body systems, but the spectrum signature carries over to few-body
systems

→ → p cot (p) = S(E(L))δ0
1

πL
→

↔
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Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)  

D. Lee, TRIUMF Ab Initio Workshop 2018;
Frame et al., PRL 121 032501 (2018)

KDE Oxygen Theme



 


Bonila et al., arXiv:2203.05282; Melendez et al., arXiv:2203.05528

novel numerical technique, broadly applicable

amazingly simple in practice

special case of "reduced basis method" (RBM)

Eigenvector continuation
Many physics problems are tremendously difficult...

huge matrices, possibly too large to store

most exact methods suffer from exponential scaling

interest only in a few (lowest) eigenvalues

 


Introducing eigenvector continuation
 


ever more so given the evolution of typical HPC clusters► 

SK et al., PLB 810 135814 (2020);
Demol, ..., SK et al., PRC 101 041302 (2020); ...

emulators, perturbation theory, ...
► 
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Frame et al., PRL 121 032501 (2018)

General idea
Scenario

consider physical state (eigenvector) in a large space

parametric dependence of Hamiltonian  traces only small subspace

Procedure

calculate ,  in "training" regime

solve generalized eigenvalue problem
  with

Prerequisite

smooth dependence of  on 

Result

construction of highly efficient, tailored variational basis

enables analytic continuation of  from
  to 

H(c)

|ψ( )⟩ci i = 1, … NEC

H|ψ⟩ = λN |ψ⟩

► = ⟨ |H( )| ⟩Hij ψi ctarget ψj

► = ⟨ | ⟩Nij ψi ψj

H(c) c

|ψ(c)⟩ { }ci ctarget
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Finite-volume eigenvector continuation
Naive setup

consider states  at volume 

want to use these to extrapolate via EC to target volume 

to that end, we'd consider Hamiltonian and norm matrices like this:

| ⟩ψLi
Li

L∗

Hij

Nij

= ⟨ | | ⟩ψLi
HL∗

ψLj

= ⟨ | ⟩ψLi
ψLj
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Finite-volume eigenvector continuation
Naive setup

consider states  at volume 

want to use these to extrapolate via EC to target volume 

to that end, we'd consider Hamiltonian and norm matrices like this:

However...
 


All the are defined in different Hilbert spaces!
parametric dependence now not only in the Hamiltonian...

...but inherent in the basis

need to generalize EC to deal with this scenario

work together with graduate student Nuwan Yapa

| ⟩ψLi
Li

L∗

Hij

Nij

= ⟨ | | ⟩ψLi
HL∗

ψLj

= ⟨ | ⟩ψLi
ψLj

| ⟩ψLi
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Dilatations
consider a function  with period , 

this can be mapped onto a function with period  by means of a
dilatation:

this provides a bijection between the Hilbert spaces 
and 

Example: periodic bound-state wavefunction

f L f ∈ HL

L′

( f)(x) = f( x)DL,L′
L

L′

−−−
√

L

L′

HL H
′
L
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Periodic matching
consider the union of all periodic Hilbert spaces:


define a new operation for , , :

similarly, define inner products between different periodicities:

together, these make  a vector space with inner product

H = ⋃L>0 HL

not a Hilbert space with normal pointwise addition► 

f ∈ HL g ∈ HL′ > LL′

(f g)(x) = ( f)(x) + g(x)+
max

DL,L′

⟨f, g = ⟨ f, g = g(x) dx⟩max DL,L′ ⟩HL′ ∫
/2L′

− /2L′
( f)(x)DL,L′

∗

H
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Periodic matching
consider the union of all periodic Hilbert spaces:


define a new operation for , , :

similarly, define inner products between different periodicities:

together, these make  a vector space with inner product

Truncated periodic bases

let  be a truncated basis of plane-wave states

then for  and , the  inner
product of coefficient vectors

is the same as 

H = ⋃L>0 HL

not a Hilbert space with normal pointwise addition► 

f ∈ HL g ∈ HL′ > LL′

(f g)(x) = ( f)(x) + g(x)+
max

DL,L′

⟨f, g = ⟨ f, g = g(x) dx⟩max DL,L′ ⟩HL′ ∫
/2L′

− /2L′
( f)(x)DL,L′

∗

H

SL,N

ψ ∈ SL,N ∈ψ′ S ,NL′ R
N

⟨⋅, ⋅⟩max
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well established in quantum chemistry,
suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

basis functions localized at grid points

potential energy matrix diagonal

kinetic energy matrix very sparse

Discrete variable representation
Efficient calculation of several few-body energy levels

use a Discrete Variable Representation (DVR)

periodic boundary condistions  plane waves as starting point

efficient implementation for large-scale calculations

precalculate only 1D matrix elements► 

↔

handle arbitrary number of particles (and spatial dimensions)► 

SK et al., PRC 98 034004 (2018)numerical framework scales from laptop to HPC clusters
► 

Dietz, SK et al. arXiv:2109.11356recent extensions: GPU acceleration, separable interactions
► 
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DVR construction


Basic idea

start with some initial basis; here: plane waves


consider  such that


 


 


unitary trans.

 


 


DVR states

 localized at ,


note duality:
momentum mode   spatial mode 

(x) = exp(i x)ϕi

1

L
−−

√

2πi

L

( , )xk wk ( ) ( ) =∑
k=−N/2

N/2−1

wk ϕ∗
i xk ϕj xk δij

⟶

= ( )Uki wk
−−

√ ϕi xk

(x)ψk xk ( ) = /ψk xj δkj wk
−−

√

ϕi ↔ ψk
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DVR basis states
construct DVR basis in simple relative coordinates

separate center-of-mass energy (choose )

mixed derivatives in kinetic energy operator

 

general DVR state for  particles in  dimensions

basis size: 

because Jacobi coordinates would complicate the boundary conditions► 

P = 0

=xi ∑
i=1

n

Uijri

=Uij

⎧

⎩
⎨

δij

−1
1/n

for i, j < n

for i < n, j = n

for i = n

n d

► |s⟩ = |( , ⋯ , ), ⋯ , ( , ⋯); spins⟩ ∈ Bk1,1 k1,d kn−1,1

dimB = (2S + 1 ×)n N d×(n−1)
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(Anti-)symmetrization and parity
Permutation symmetry

for each , construct
|s⟩ ∈ B |s = N sgn(p) (p)|s⟩⟩A ∑
p∈Sn

Dn

then  is antisymmetric:
► |s⟩A A|s = |s⟩A ⟩A
for bosons, leave out   symmetric state► sgn(p) ⇝

 some other , modulo periodic boundary► (p)|s⟩ =Dn | ⟩ ∈ Bs′

p. 33



(Anti-)symmetrization and parity
Permutation symmetry

for each , construct


This operation partitions the orginal basis!

Reduced basis
each state appears in at most one (anti-)symmetric combination

significant reduction of basis size:


parity (with projector ) can be
handled analogously

|s⟩ ∈ B |s = N sgn(p) (p)|s⟩⟩A ∑
p∈Sn

Dn

then  is antisymmetric:
► |s⟩A A|s = |s⟩A ⟩A
for bosons, leave out   symmetric state► sgn(p) ⇝

 some other , modulo periodic boundary► (p)|s⟩ =Dn | ⟩ ∈ Bs′

no need for expensive symmetry eigenspace determination► 

N → ≈ N/n!Nreduced

= 1 ±PP±
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Two-body proof of concept
consider a simple two-body system as first example

note: cubic finite volume breaks spherical symmetry

attractive Gaussian interaction:
 ,
 , ► V (r) = exp(−( )V0
r

R
)

2
R = 2 = −4V0

angular momentum no longer good quantum number► 

instead: cubic irreducible representations
► Γ ∈ , , E, ,A1 A2 T1 T2

to good approximation, S-wave states  irrep. (positive parity)► ∼ A
+
1
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Three-boson resonance
three bosons with mass  = 939.0 MeV, potential = sum of two Gaussians

three-body resonance at

avoided crossing well reproduced by FVEC calculation

m

 MeV (Blandon et al., PRA 75 042508 (2007))► −5.31 − i0.12

 MeV (Fedorov et al., FB Syst. 33 153 (2003))
  (potential S-wave projected!)► −5.96 − i0.40

p. 35



Dietz, SK et al. arXiv:2109.11356

Three neutrons
now consider three neutrons with Pionless EFT leading-order interaction

separable super-Gaussian form with  and  MeV

efficiently implemented within DVR framework


total number of training data:  (partly covering cubic group
multiplets)

V (q, ) = C g(q)g( )   ,    g(q) = exp(− / )q ′ q ′ q2n Λ2n

n = 2 Λ = 250

3 × 8 = 24

p. 36



Uncertainty quantification
FVEC uncertainty depends on choice of training data

use this dependence to estimate uncertainty

Application to two-body system

domain to choose from (note also: extrapolation vs. interpolation)► 

number  of training space (controls dimension of FVEC subspace)► NEC

calculate initial pool of training data► 

from that pool, consider combinations with fixed ► NEC
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Summary and outlook
Volume dependence of charged-particle bound states

wave function at large distances determines finite-volume energy shift

volume dependence is known for arbitrary angular momentum and cluster
states

infinite-range Coulomb force complicates derivation

leading volume dependence derived for S-wave states

Volume extrapolation via eigenvector continuation

DVR method can handle few-nucleon EFT calculations in large boxes

extension of EC to handle parametric dependence direcly in basis

justified by periodic matching construction

makes it possible to extrapolate reliably over large volume ranges

in progress: application to four-neutron system

possible to extract asymptotic normalization coefficients► 

numerical calculation and/or bounds for additional correction terms► 
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Backup slides
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SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

Higher partial waves
general result: 

 

prefactor for any bound state is polynomial in 

depends in general on irreducible representation of the cubic group

ΔE(L) = α ( ) × | + O( )1
κL

γ∞|2
e−κL

μL
e− κL2√

1/(κL)
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finite subgroup of 

number of elements = 24

five irreducible representations

             

Broken symmetry
the finite volume breaks the spherical symmetry of the system

irreducible representations of  are reducible with respect to 

 


 


 waves contribute only to ,  waves only to 

splitting first starts at  waves: 

SO(3) O

SO(3)
Γ A1 A2 E T1 T2

dim Γ 1 1 2 3 3

S A1 P T1

D = ⊕D
2

T
+

2 E
+

p. 43
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Higher partial waves
general result: 

 

prefactor for any bound state is polynomial in 

depends in general on irreducible representation of the cubic group

ΔE(L) = α ( ) × | + O( )1
κL

γ∞|2
e−κL

μL
e− κL2√

1/(κL)
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Sign of the energy shift
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Sign of the energy shift
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Sign of the energy shift

Δ (L) > 0EB

even parity  WF profile relaxed  less curvarture
  more deeply bound→ → ⇝
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Sign of the energy shift

Δ (L) > 0EB

even parity  WF profile relaxed  less curvarture
  more deeply bound→ → ⇝

Δ (L) < 0EB

odd parity  WF profile compressed  more curvarture
  less deeply bound→ → ⇝
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N-body setup
- up to -body interactions, can be local or non-local

all with finite range, set 

assume asymptotically large volume: 

W1,2 W3,5

3

4

5

W4,5W3,4 W3,4,5

L

2 N

( , ⋯ ; , ⋯ ) = ( , ; , ) + ⋯V1⋯N r1 rN r
′
1 r

′
N ∑

i<j

Wi,j ri rj r
′
i r

′
j 1 ,i j

R = max{ , ⋯}Ri,j

L ≫ R
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SK + Lee, PLB 779 9 (2018)

General result
consider  particles (in  spatial dimensions), all interaction ranges
 


separated into clusters  set  in configuration space

restricted Hamiltonian determines asymptotic wavefunction

simplest example: 

 


 


 


 


 


smallest
 
governs volume dependence

this assumes both clusters to be bound (otherwise: power-law correction factors)

N d ≤ R

⇝ S

A = 1

( , ⋯ ) ∝ ( , ⋯ ) ( , ⋯ )ψB
N

r1 rN ψB
A

r1 rA ψB
N−A

rA+1 rN

× ( ( )κA|N−ArA|N−A)1−d/2 Kd/2−1 κA|N−ArA|N−A (1)

Δ (L) ∝ ( L ( L)  ∼ exp(− L)/EN κA|N−A )1−d/2 Kd/2−1 κA|N−A κA|N−A L(d−1)/2

=κA|N−A 2 ( − − )μA|N−A BN BA BN−A

− −−−−−−−−−−−−−−−−−−−−
√
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