Study of fundamental symmetries in the few-nucleon systems

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

13th International Spring Seminar on Nuclear Physics "Perspectives and Challenges in Nuclear Structure after 70 Years of Shell Model"

May 15–20, 2022 S. Angelo d'Ischia, Ischia, Italy

M. Viviani (INFN-Pisa)

Outline

Theoretical study of A = 4 reactions

3 The 3 H($p, e^{+}e^{-}$) 4 He and 3 He($n, e^{+}e^{-}$) 4 He processes

Incorporating the X17

The X17 boson "anomaly"

The ATOMKI experiments

- [Krasznahorkay et al., PRL 116, 042501 (2016)]: "Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson"
- [Krasznahorkay et al., arXiv:1910.10459 (23 October 2019)]: "New evidence supporting the existence of the hypothetic X17 particle"
- [Krasznahorkay et al., PRC 104, 044003 (2021)]: "A new anomaly observed in ⁴He supports the existence of the hypothetical X17 particle"

Reaction	m _X	Δm_X (stat)	Δm_X (syst)	au	Evidence
	[MeV]	[MeV]	[MeV]	[sec]	
⁷ Li(<i>p</i> , <i>e</i> ⁺ <i>e</i> ⁻) ⁸ Be	16.70	0.35	0.50	10^{-14}	$> 5\sigma$
3 H($\rho, e^{+}e^{-}$) ⁴ He (2019)	16.84	0.16	0.20		$>$ 7.2 σ
3 H($p, e^{+}e^{-}$) ⁴ He (2021)	16.94	0.12	0.21		$>$ 8.9 σ

Measurements of the e^+e^- angular correlation in the internal pair conversion (IPC) nuclear transition

image from [Feng et al., 2016]

Previous "anomalies" found in IPC

- [de Boer *et al.*, Phy. Lett. **B388**, 235 (1996); J. Phys. G 27 L29 (2001)]: IKF Frankfurt: 9 MeV Boson?
- [Vitéz et al., Acta Physica Polonica B 39, 483 (2008)]
- [de Boer & Fields, Int. J. mod. Phys. E 20, 1787 (2011)]

M. Viviani (INFN-Pisa)

The ⁸Be experiment

[Krasznahorkay et al., PRL 116, 042501 (2016)]

Angular distribution of the e^-e^+ pair

[Tanedo,

www.particlebites.com/?p=3970
(Aug. 25, 2016)] "The Delirium over
Beryllium"

- [Zhang & Miller, 2017] "Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?"
- Last minute news!!! New paper by the ATOMKI coll. arXiv:2205.07744

Process: $^{7}\text{Li} + p \rightarrow (^{8}\text{Be})^{*}$

- Radiative capture: $({}^{8}Be)^{*} \rightarrow {}^{8}Be + \gamma$
- IPC (standard): $({}^{8}Be)^{*} \rightarrow {}^{8}Be + \gamma^{*} \rightarrow {}^{8}Be + e^{+}e^{-}$
- IPC (exotic): $(^{8}Be)^{*} \rightarrow ^{8}Be + X \rightarrow ^{8}Be + e^{+}e^{-}$
- Background: real γ converting to e⁺e⁻ from interaction with the apparatus = external pair conversion (EPC)

The ⁴He experiment (2019)

- [Krasznahorkay et al., arXiv:1910.10459v1], [Firak et al., EPJ Web Conf. 232, 04005 (2020)]
- [Frankenthal, https://www.particlebites.com/?p=6696 (Jan. 4, 2020)] "The Delirium over Helium" for an update of the precedent particlebites.com report
- cerncourier.com/a/rekindled-atomki-anomaly-merits-closer-scrutiny/
- Reaction ${}^{3}\mathrm{H}(p, e^{-}e^{+}){}^{4}\mathrm{He}$, proton beam of 0.90 MeV

Figure 3. The Atomki nuclear spectrometer. This is an upgraded detecto

Angular distribution of the e^-e^+ pair (IPC+EPC)

Fundamental symmetries in few-nucleon syst.

- E - N

The ⁴He experiment (2021)

[Krasznahorkay et al., PRC 104, 044003 (2021)]

Reaction ³H(p, e⁻e⁺)⁴He, now 3 energies of the proton beam: 0.51, 0.61, and 0.90 MeV

Measured angular distribution of the e^-e^+ pairs

GEANT analysis: Subtraction of the background of pairs created EPC processes

ъ

These announcements triggered new expt. activities

	Experiment
LHCb	Charm meson decay $D^{*}(2007)^{0} \rightarrow D^{0}A' A' \rightarrow e^{+}e^{+}$
Mu3e	Muon decay channel $\mu^+ \rightarrow e^+ \nu_e \ \overline{\nu_\mu} \ (A' \longrightarrow e^*)$
VEPP-3	$e^{\cdot}e^{+} \longrightarrow A^{\prime} \gamma$
KLOE-2	$e^{\cdot}e^{+} \longrightarrow \gamma(X \longrightarrow e^{-}e^{+})$
MESA	e-beam on gaseous target, to produce A'
Darklight	e-scattering of H gas target, to produce A'
HPS	e-beam on W to study $A' \longrightarrow e^{\cdot}e^{\star}$ and $A' \longrightarrow \mu^{\cdot}\mu^{\star}$
PADME	e+ beam on diamond target e e $\to X\gamma$
NA64	eZ →eZ +X17
NSL	⁸ Be (A' →e-e+)
⁸ BeP	^s Be (A' →e-e+)
New JEDI	⁸ Be/ ³ He/d (A' →e-e+)
Montréal	⁸ Be (A' →e-e+)
NSCL	^s Be (A' →e-e+)
IUAP CTU	⁸ Be and ⁴ He (A' —e-e+)
n_TOF	⁴ He and ⁸ Be (A' —e-e+) (proton and neutron beams)
MEG2	*Be
NUCLEX	⁸ Be

In particular in Italy ...

- PSI: ⁷Li(p, e⁺e⁻)⁸Be MEGII (data taking underway)
- n_ToF at CERN: ³He(n, e⁺e⁻)⁴He (planned in 2023)
- LNL: ⁷Li(p, e⁺e⁻)⁸Be NUCLEX (planned in 2023)
- in investigation: ²H(n, e⁺e⁻)³H (n_ToF) and ²H(p, e⁺e⁻)³He (LNGS)

and theoretical speculations...

- [Feng et al., 2016] "Protophobic Fifth Force Interpretation of the Observed Anomaly in ⁸Be Nuclear Transitions"
- [Kozaczuk, Morrissey, & Stroberg, 2016] "Light axial vector bosons, nuclear transitions, and the ⁸Be anomaly"
- [Delle Rose, Khalil, & Moretti, 2019] "New Physics Suggested by Atomki Anomaly"
- [Feng, Tait, & Verhaaren, 2020] "Dynamical Evidence For a Fifth Force Explanation of the ATOMKI Nuclear Anomalies"
- [Fayet, 2020] "The *U* boson, interpolating between a generalized dark photon or dark *Z*, an axial boson and an axionlike particle"
- [Alves, 2020] "Signals of the QCD axion with mass of 17 MeV/c²: Nuclear transitions and light meson decays"
- Shedding light on X17", workshop held at Centro Fermi, Rome, Sep 6–8, 2021
- [Wong, 2022] "QED Meson Description of the X17 and Other Anomalous Particles"

Most of the speculations based on "resonance saturation" Assumed mechanism $p + {}^{3}\text{H} \rightarrow ({}^{4}\text{He})^{*} \rightarrow {}^{4}\text{He} + X$, followed by the decay $X \rightarrow e^{+}e^{-}$

Present calculation

Motivation of this work:

- solve accurately the A = 4 nuclear dynamics
- include the contribution of all relevant waves
- treat the X17 interaction within the χ PT framework

 0^+ and 0^- resonances: very sensitive to the nuclear interaction

[Tilley, Weller, & Hale, 1992]

For the 0⁺ resonance:

[Bacca et al., 2015], [Kegel et al., 2022]

For the 0⁻ resonance:

• $\vec{n} + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$ "n3he" experiment at ORNL at $E_n = 4.6 \text{ meV}$

•
$$A_y = (-41 \pm 5.6 \text{ stat } \pm 0.6 \text{ sys}) \cdot 10^{-8}$$

X17 interaction with electrons

- $\Gamma = 1, \gamma^5, \gamma^\mu, \gamma^\mu \gamma^5, \dots$
- e =electric charge (e > 0)
- X(x) X17 field

$$\mathcal{L} = e\varepsilon_e \overline{e}(x) \Gamma e(x) X(x) + e\varepsilon_u \overline{u}(x) \Gamma u(x) X(x) + \cdots$$

X17 decay

- $X \to e^- e^+, \nu \overline{\nu}, \dots$
- Decay channel in e⁻e⁺ dominant [Feng et al., 2016–2020]
- $\Gamma_X \approx \varepsilon_e^2 \alpha M_X$
- The X17 must decay in the apparatus $\rightarrow |\varepsilon_e| > 10^{-5}$
- Beam dump experiments:
 - SLAC E141 |ε_e| > 2 10⁻⁴
 [Alexander *et al.*, 2017]
 - NA64 |ε_e| > 6.8 10⁻⁴ [Banerjee et al., 2020]
- Direct search in e^-e^+ experiments: KLOE2 $|\varepsilon_e| < 2 \ 10^{-3}$ [Feng *et al.*; 2016]

Proposed models

May 18, 2022 11/31

Proposed models

Proposed models

M. Viviani (INFN-Pisa)

Fundamental symmetries in few-nucleon syst.

May 18, 2022 11/31

Theoretical study of A = 4 reactions

Numerical techniques for A = 4 for scattering

- Faddeev-Yakubovsky methods [Lazauskas & Carbonell, 2004], [Deltuva & Fonseca, 2007]
- Expansion on a basis: NCSM [Quaglioni, Navratil & Roth, 2010], Gaussians [Aoyama et al., 2011], R-matrix [Descouvement & Baye], HH [Kievsky, Marcucci, MV, et al., 2008], ...

Modern nuclear interactions

- Based on xEFT & x-perturbation theory [Weinberg, 1966], [Callan et al., 1969], [Gasser & Leutwyler, 1984]
- Expansion parameter Q/Λ_{χ} , $Q \sim m_{\pi}$, $\Lambda_{\chi} \approx 1$ GeV [Weinberg,1990-1992], [Ordoñez, Ray, & Van Kolck, 1996], [Epelbaum, Hammer, & Meissner, 2009] for a review

NN interaction:

- Lowest order (LO) $(Q/\Lambda_{\chi})^{0}$: one-pion-exchange potential + contact interactions
- next-to-leading (NLO): 1 loop+dimensional regularization, etc
- The various contributions can be visualized through TOPT diagrams
- Cutoff $\Lambda = 400 600$ MeV for the non-perturbative regularization: the results should not depend on it
- 3N interaction: developed at N4LO, but for the moment practical calculations are possible only at N2LO

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Benchmark test of 4N scattering calculations

N3LO500 potential $-{}^{3}$ He $(n, n)^{3}$ He elastic scattering

AGS= Deltuva & Fonseca - FY= Lazauskas & Carbonell - HH= present work

May 18, 2022 13/31

Calculation of transition amplitudes

We need 1) initial/final wave functions 2) transition operators (currents & charges)

Initial/final wave functions

 Ψ_4 : ⁴He bound state wave function $J^{\pi}=0^+$

 Ψ_{1+3} : scattering wave function – decomposed in components of definite *LSJ*

$$\Psi_{1+3} = \sum_{LMSS_z J J_z} (\frac{1}{2}m_3 \frac{1}{2}m_1 | SS_z) (LMSS_z | JJ_z) 4\pi i^L Y_{LM}^*(\hat{p}) e^{i\sigma_L} \Psi_{1+3}^{LSJ}$$

p relative momentum

EM charge & currents transition operators

EM current from χ EFT

[Park *et al*, 1993], [Kolling *et al*, 2009], [Pastore *et al*, 2009] Including the Δ d.o.f. [Schiavilla *et al*., 2018]

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

${}^{3}\mathrm{H}(\boldsymbol{p},\gamma){}^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(\boldsymbol{n},\gamma){}^{4}\mathrm{He}$ EM captures

Interest

- BBN, production of ⁴He
- Dominated by the E_1 transition $1^- \rightarrow 0^+$
- No sensivity to interactions/MEC
- Real *γ*'s conversion in *e⁻e⁺* from interaction with the apparatus
- → external pair convertion (EPC)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

The ${}^{3}\mathrm{H}(p, e^{+}e^{-}){}^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(n, e^{+}e^{-}){}^{4}\mathrm{He}$ processes

"Standard" EM process

$$\frac{d^{6}\sigma}{d\epsilon d\hat{k} d\epsilon' d\hat{k}'} = \frac{\alpha^{2}}{8\pi^{3}} \frac{kk'}{Q^{4}v} \delta\left(E_{0} - \epsilon - \epsilon' - \frac{(\mathbf{p} - \mathbf{q})^{2}}{2M_{4}}\right)$$

$$\times \sum_{i} v_{i} R_{i}(q, \omega)$$

 $E_0 = E_p + B_4 - B_3 \approx 20 \text{ MeV}, \ \boldsymbol{q} = \boldsymbol{k} + \boldsymbol{k}', \ \omega = \epsilon + \epsilon', \ Q^2 = \omega^2 - q^2 > 0$ "time-like" $\cos \theta_{ee} = \hat{k} \cdot \hat{k}'$, i = L, T, TT, TT', LT, LT'

$$v_L = \frac{Q^4}{q^4} (\epsilon \epsilon' + \mathbf{k} \cdot \mathbf{k}' - m_e^2) \qquad R_L(q, \omega) = \sum_{m_1, m_3} |\langle \Psi_4 | \rho(\mathbf{q})^\dagger | \Psi_{m_1, m_3}^{(pt)} \rangle|^2 \sim \sum_{LSJ} |C_J^{LSJ}|^2$$

After integrating the δ over ϵ' and numerically over ϵ ($p_r = \epsilon' (k' - p \cos \theta' + k \cos \theta_{ee})/k'$)

17/3

${}^{3}\mathrm{H}(p, e^{+}e^{-}){}^{4}\mathrm{He}$ cross section in the one-photon-exchange approximation

Multipole angular distribution as reported in [Tanedo, www.particlebites.com/?p=3970]

Due to the simple *q* dependence of the matrix elements, it is not possible to explain any large angle "bump"

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Incorporating the X17

Scales ...

- $E \sim 1$ TeV BSM mechanism (axion, SSM, . . .)
- E ~ 1 GeV: interaction with SM particles
- $E \sim 100$ MeV: interaction with hadrons $(N, \pi, ...)$
- $E \sim 1$ MeV: nuclear physics experiments

EFT approach

- Start with a generic interaction Lagrangian with electrons, u and d quarks, ...
- 2 Generate the interaction at hadronic level using χEFT

Accurately compute the matrix elements of the generated operators

Analysis similar to what done for DM interaction with nuclei [Menéndez et al., 2011-2012], [Hoferichter et al., 2015–2019], [Bishara et al., 2016], [Körber et al., 2017], [Nogga et al., 2017], [Andreoli et al., 2019], [Hu et al., 2021], ... For X17: LO (+ some subleading terms) analysis [MV et al., PRC **105**, 014001 (2022)]

LO (+ some subleading terms) analysis: S case

[MV et al., PRC 105, 014001 (2022)]

Scalar case at 1 GeV scale

$$\mathcal{L}^{S}_{q,X}(x) = \sum_{f=u,d} e \frac{\varepsilon_f \, m_f}{\Lambda} \, \bar{f}(x) f(x) \, X(x) \; ,$$

At hadronic level

$$\mathcal{L}_{X}^{S}(x) = e \overline{N}(x) [\eta_{0}^{S} + \eta_{z}^{S} \tau_{3}] N(x) X(x)$$

$$\eta_{0}^{S} = -\frac{4 c_{1} m_{\pi}^{2}}{\Lambda_{S}} \varepsilon_{0}$$

$$\eta_{z}^{S} = -\frac{2 c_{5} m_{\pi}^{2}}{\Lambda_{S}} \varepsilon_{z}$$

$$\varepsilon_{0} = \frac{\Lambda_{S}}{\Lambda} \frac{m_{u} \epsilon_{u} + m_{d} \epsilon_{d}}{2 m_{q}}$$

$$\varepsilon_{z} = \frac{\Lambda_{S}}{\Lambda} \frac{m_{u} \epsilon_{u} - m_{d} \epsilon_{d}}{2 m_{q}}$$

- A high energy scale (\approx 246 GeV)
- $\Lambda_S = 1$ GeV introduced for convenience
- Extended to treat also pseudoscalar (P), vector (V), and axial (X) bosons

$$\frac{d^{5}\sigma}{d\epsilon\,d\hat{\mathbf{k}}\,d\hat{\mathbf{k}}'} = \sigma_{EM}(\epsilon) + \varepsilon_{\theta}\left[\frac{R_{X}(\epsilon)}{D_{X}} + \text{c.c.}\right] + \varepsilon_{\theta}^{2}\frac{R_{XX}(\epsilon)}{|D_{X}|^{2}} = \sigma_{EM}(\epsilon) + \frac{\varepsilon_{\theta}\left[R_{X}(\epsilon)\,D_{X}^{*} + \text{c.c.}\right] + \varepsilon_{\theta}^{2}R_{XX}(\epsilon)}{|D_{X}|^{2}}$$

$$rac{1}{|D_X|^2}
ightarrow rac{\pi}{|lpha_i|} rac{1}{\Gamma_X M_X} \, \delta(\epsilon - \epsilon_i) \; .$$

• Propagator of a massive particle $1/D_X = 1/(Q^2 - M_X^2)$, where $Q^2 = (k + k')^2$

•
$$M_X \to M_X - i \frac{\Gamma_X}{2}$$

•
$$\Gamma_X$$
 from the process $X \to e^+e^-$

•
$$\Gamma_X = \varepsilon_e^2 \alpha M_X \sim 1 \text{ eV}$$

• Condition $Q^2 - M_X^2 = 0$ verified for $\epsilon = \epsilon_i, i = 1, 2$

• For
$$\epsilon \approx \epsilon_i$$
, $Q^2 - M_X^2 = \alpha_i (\epsilon - \epsilon_i)$

イロト イ理ト イヨト イヨト

$$\frac{d^{4}\sigma}{d\hat{k}\,d\hat{k}'} = \left[\int_{m_{\theta}}^{E_{max}} \sigma_{EM}(\epsilon)\right] + \sum_{i} \left[2\varepsilon_{\theta}\Im\left(R_{X}(\epsilon_{i})\right)\frac{\pi}{|\alpha_{i}|} + \varepsilon_{\theta}^{2}R_{XX}(\epsilon)\frac{\pi}{|\alpha_{i}|M_{X}\Gamma_{X}}\right]$$

No sensitivity to ε_e and the interference term!!!

M. Viviani (INFN-Pisa)

Fit of the 2019 data

- In the perpendicular plane, the X17 signal appears for $\theta_{ee} > 110^{\circ}$
- only a counting rate is fournished no information on the flux/target/efficiencies
- Procedure:
 - rescale the ATOMKI rate by a factor so to reproduce the cross section for θ_{ee} < 110°
 - For these angles the cross section is EM only no unknown parameter
 - Fix M_X , ε_u , ε_d to reproduce the "bump"

Here there is also the problem of the EPC pairs!

M. Viviani (INFN-Pisa)

Fundamental symmetries in few-nucleon syst.

May 18, 2022 22/31

Fit of the 2021 data

- 2021 data: the background has been somehow subtracted
- but the procedure it is still difficult to be applied
- Furthermore: finite angular/energy resolution of the target, geometry of the detector, efficiencies, etc.

For the moment

- let us study he dependence of the cross section on
 - beam energy
 - the *e*⁺*e*⁻ emission angles
- see if it is possible to extract information on the hypothetical X17

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

pair emission in the perpendicular plane - peak fitted at 0.90 MeV

M. Viviani (INFN-Pisa)

pair emission in the perpendicular plane - peak fitted at 0.90 MeV

M. Viviani (INFN-Pisa)

pair emission in the perpendicular plane - peak fitted at 0.90 MeV

M. Viviani (INFN-Pisa)

pair emission in the perpendicular plane - peak fitted at 0.90 MeV

M. Viviani (INFN-Pisa)

pair emission in the perpendicular plane - peak fitted at 0.90 MeV

M. Viviani (INFN-Pisa)

pair emission in the perpendicular plane - peak fitted at 0.90 MeV

M. Viviani (INFN-Pisa)

pair emission in the perpendicular plane - peak fitted at 0.90 MeV

M. Viviani (INFN-Pisa)

Extracted coupling constants

S,P cases	V,A cases	Protophobic case
$\varepsilon_{0,z} = \frac{\Lambda_S}{\Lambda} \frac{m_u \varepsilon_u \pm m_d \varepsilon_d}{2m_q}$	$\varepsilon_{0,z} = \frac{\varepsilon_u \pm \varepsilon_d}{2}$	$\left[2\varepsilon_{u}+\varepsilon_{d}=0\Rightarrow3\varepsilon_{0}+\varepsilon_{z}=0\right]$

	N3LO500/I	N2LO500	NVIa/3	3NIa
Case	ε_0	ε_{Z}	ε_0	εz
S	$0.86 imes 10^{0}$	0	$0.75 imes 10^{0}$	0
Р	0	$5.06 imes10^{0}$	0	$4.82 imes10^{0}$
Р	$2.55 imes 10^{1}$	0	2.72×10^{1}	0
V	$2.56 imes 10^{-3}$	$-3arepsilon_{0}$	$2.66 imes 10^{-3}$	$-3arepsilon_0$
Α	$2.58 imes10^{-3}$	0	$2.89 imes10^{-3}$	0

First rough estimates - very uncertain due to the aforementioned difficulties

Vector case	Pseudoscalar case	Axial case
 ε_{u,d} ~ 10⁻³ Feng <i>et</i> <i>al.</i>, 2016-2020] Consistent! 	 ε_{u,d} ~ 1 Alves, 2020], Delle Rose <i>et al.</i>, 2019] too small! 	• $ \varepsilon_{u,d} \sim 10^{-4}$ [Kozaczuk, Morrissey, & Stroberg, 2016] • too small!
M. Viviani (INFN-Pisa)	Fundamental symmetries in few-nucleon syst	. May 18, 2022 26/31

⁸Be experiment at PSI

Courtesy by A. Papa (INFN-Pisa) and F. Renga (INFN-RM1)

Proton beam used to test the apparatus MEGII CW accelerator and Fifth force target

Search for possible $\mu \rightarrow e$ transition

- Data taking underway!!!
- Beam energy 1.2 MeV
- Thick target $T_p = 1.2 \rightarrow 0.8$ MeV
- First results expected this year
- In progress: Theoretical effort to analyze the data (see the last part of the talk)

⁴He experiment at CERN

 3 He $(n, e^+e^-)^{4}$ He using the neutron beam of the n_ToF experiment [MV *et al.*, PRC **105**, 014001 (2022)]

- neutron energy tagged by means of the time-of-flight
- background:
 - ³He(*n*, *n*)³He
 - ³He(n, p)³H: the most dangerous problem σ_(n,p) ≫ σ_{IPC}
 - ${}^{3}\text{He}(n,\gamma){}^{4}\text{He}$ followed by EPC
- Energy of the leptons is of several MeV: $\beta \sim 1$
- Energy of the protons \sim a few MeV: $\beta \ll 1$
- Cherenkov [C. Gustavino et al., 2021]

M. Viviani (INFN-Pisa)

Fundamental symmetries in few-nucleon syst.

May 18, 2022 28/31

Conclusions and perspectives

Analysis of the ⁴He ATOMKI "anomaly"

- Accurate description of the nuclear dynamics using state-of-the-art techniques
- Test with $p + {}^{3}H$ and $n + {}^{3}He$ EM captures data: OK!
- Contribution of the 1⁻ wave very significant at all energies
- Inclusion of the possible emission of an X17, vs. the beam energy and the emission angles

Perspectives

- New ⁸Be experiment underway at PSI
 - Analysis of the ⁷Li(p, e⁺e⁻)⁸Be process using GFMC calculation of ⁸Be ground/excited states
- Collaboration with the n_ToF group
 - analysis of the ${}^{3}\text{He}(n, e^{-}e^{+})^{4}\text{He}$ process
 - technical design in progress & GEANT analysis currently in progress
- ${}^{2}H(n, e^+e^-){}^{3}H$ and ${}^{2}H(p, e^+e^-){}^{3}He$ reactions to test the protophobic hypothesis
- Study of possible "standard" explanation
 - Two-photon exchange contribution [Aleksejevs et al., 2021] for ⁴He & ⁸Be
- If the anomaly is confirmed, full χ EFT treatment of the X17-nucleon interaction
- Analysis of CP-violating X17 interactions and relation to EDM's

M. Viviani (INFN-Pisa)

Theoretical group

- A. Kievsky, & L.E. Marcucci INFN-Pisa & UniPI, Pisa
- L. Girlanda UniSalento & INFN-Lecce, Lecce
- E. Filandri UniTN, Trento
- R. Schiavilla ODU, Norfolk, and Jefferson Lab., Newport News
- G. King & S. Pastore WU, St. Louis
- G. Salmè INFN-RM1, Rome

n_ToF Working group

May 18, 2022 30/31

Thank you for your attention!

BACKUP SLIDES

M. Viviani (INFN-Pisa)

Fundamental symmetries in few-nucleon syst.

May 18, 2022 32/31

æ

Violation of the time-reversal symmetry

Interest: Matter-antimatter asymmetry [Sakharov, 1967] \rightarrow CP violation

At a high energy scale

- In the Standard Model (SM)
 - phase in the CKM matrix (too small)
 - possible phase in the neutrino mixing matrix (?)
 - θ -term: From $d_n < 2.9 \cdot 10^{-13} e$ fm [Baker *et al.*, 2006] $\rightarrow |\theta| < 10^{-10}$ Strong CP problem
- Beyond Standard Model (BSM) dimension 6 possible terms
 - Weinberg three-gluon operator
 - quark EDM term
 - quark chromo-EDM term
 - four-quark operators
- See [De Vries et al., FIP 8, 218 (2020)] for a review M. Viviani (INEN-Pisa)
 Fundamental symptotic symptot symptot

At the nuclear energy scale

- Nucleons and pions d.o.f.
- TV nucleon-pions vertices g_{0÷2}
 - Three-pion vertex △
 - Nucleon EDMs d_p, d_n
 - Nucleon-nucleon contact terms
 C1 ÷ 5
- it is possible (but difficult) to relate these LEC's with those appearing in SM and BSM

・ロト ・ 四ト ・ ヨト ・ ヨト

Many parameters ⇒ many measurements are needed!

Electric dipole moments (EDMs)

For an "elementary" particle $\textbf{\textit{d}} \propto \textbf{\textit{J}}$

If *P* and *T* are conserved $\Rightarrow \langle \vec{d}_n \rangle = 0$

- Existing measurements:
 - Electron $|d_e| < 10^{-15} e$ fm [ACME, 2014]
 - Neutron $|d_n| < 2.9 \cdot 10^{-13} e$ fm [Baker *et al.*, 2006]
 - Heavy nuclei ¹⁹⁹Hg, pear-shaped nuclei
- EDMS predicted by the CKM phase are 5-6 orders of magnitude smaller
- New observables
 - EDMs of charge particles (p, d, ³H, ³He) up to ~ 10⁻¹⁶ e fm in dedicated storage-rings [Y. K. Semertzidis, 2011]
 - $\vec{n}\vec{A}$ scattering \Rightarrow amplified by nuclear resonances [Gudkov, 1992]

EDMs of light nuclei

Solution of $H\Psi = E\Psi$ including components of both parities and then computing $\langle \Psi | \sum_{i=1}^{A} e_i r_i | \Psi \rangle$

 $d^{A} = d_{p}a_{p} + d_{n}a_{n} + g_{0}a_{0} + g_{1}a_{1} + g_{2}a_{2} + C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + C_{4}A_{4} + C_{5}A_{5} + \Delta a_{\Delta}$

			³ H and	³ He		
			-		ЗН	³ He
Deuteron				an	-0.033	0.908
Doutoron				ap	0.909	-0.033
	a_p	0.939		<i>a</i> ₀ [fm]	-0.053	0.054
	an	0.939		a ₁ [fm]	0.158	0.158
	<i>a</i> ₁ [fm]	0.200		a ₂ [fm]	-0.119	0.119
	A ₃ [fm]	0.013		<i>A</i> ₁ [fm]	0.006	-0.006
	<i>A</i> ₄ [fm]	-0.013		A_2 [fm]	-0.010	0.010
	a_{Δ} [fm]	-0.304		A_3 [fm]	-0.008	-0.008
				A ₄ [fm]	0.013	0.013
				A ₅ [fm]	-0.022	0.022
				a_{Δ} [fm]	-0.343	-0.339

Relating X17, EDM's, $(g-2)_1, \ldots$

Browsing ArXiv:hep-ph, one can find several "interesting" models Consider, for example, [Marciano *et al.*, 2016], [Cornella *et al.*, 2019], [Di Luzio *et al.*, 2021] including CP violating terms in the X17 Lagrangian

$$\mathcal{L} = \sum_{i=e,\mu,u,d,\dots} \Big[g_{ii} \overline{\psi}_i (1-\gamma^5) \psi_i + h.c. \Big] X + \frac{1}{4} g X F^{\mu\nu} F_{\mu\nu} + \frac{1}{4} \tilde{g} X F^{\mu\nu} \widetilde{F}_{\mu\nu}$$

Contributions to

- Atomki experiments
- Image: (g − 2)_e and (g − 2)_µ
- EDM's of e, μ, neutron, nuclei

"In summary, a CPV ALP can be related to many fundamental open questions in particle physics" [Di Luzio *et al.*, 2021]