Electron scattering for neutrino physics at MAMI and MESA

Luca Doria (<u>doria@uni-mainz.de</u>)
PRISMA+ Cluster of Excellence and Institute for Nuclear Physics
Johannes Gutenberg University Mainz

13th International Spring Seminar on Nuclear Physics: "Perspectives and Challenges in Nuclear Structure after 70 Years of Shell Model,

Ischia (Italy)

Introduction

- Long-baseline Neutrino Experiments
- * The role of nuclear physics
- ***** Electron scattering at MAMI
- **Future directions and summary**

Neutrino Oscillations

- * In the SM, neutrino come with 3 flavours eigenstates ν_e, ν_μ, ν_τ :
- Determined by their weak interaction properties
- Corresponding antineutrinos (Dirac/Majorana?)
- * Three mass eigenstates ν_1, ν_2, ν_3 : stationary under time evolution
- * Mixing between flavour and mass eigenstates:
- The weak interaction produces weak eigenstates
- Mass eigenstates evolve differently in time
- Appearance of new flavour components (mixing)

 e,μ, au $v_e,
u_\mu,
u_ au$

required.

How to measure oscillations: Long Base-Line Experiments

Near Detector

$$N_{ND}(
u_{lpha},E_R)=\int dE_
u \Phi_{
u_{lpha}}(E_
u) imes \sigma(E_
u) imes R_{
u_{lpha}}(E_
u,E_R)$$

Far Detector

$$N_{FD}(\nu_{\alpha} \to \nu_{\beta}, E_R) = \int dE_{\nu} \Phi_{\nu_{\alpha}}(E_{\nu}) \times \sigma(E_{\nu}) \times R_{\nu_{\alpha}}(E_{\nu}, E_R) \times P(\nu_{\alpha} \to \nu_{\beta}, E_{\nu})$$

Why nuclei are relevant for neutrino physics?

Energy Reconstruction: Experimental Techniques

Kinematic Method

$$E_{Rec} = \frac{m_N E_{\mu} - m_{\mu}^2 / 2}{m_N - E_{\mu} + |\vec{p}_{\mu}| \cos \theta_{\mu}}$$

- * Reconstruct outgoing lepton kinematics
- * Assume only 1 knock-out nucleon
- * No meson (pion) production
- * Neglect nuclear recoil
- Used e.g. in Cherenkov detector like SuperKamiokande

Calorimetric Method

$$E_{\nu}^{\text{cal}} = E_{\ell} + \epsilon_n + \sum_{i=1}^{n} (E_{\mathbf{p}_i'} - M) + \sum_{j=1}^{m} E_{\mathbf{h}_j'}$$

- * Sums all the energies of measured particles
- * Challenges: pions and neutrons
- * Modeling important
- * Proposed e.g. for DUNE

Generators

- * Neutrino Experiments model neutrino interactions with "Generator" codes
- * Challenging: they should work on a wide range of energies
- * "Frankenstein" codes: patch together different models
- * Wide market: Genie, NuWro, Neut, GiBUU,
- * Much more than cross-sections: must model full interactions:
 - Detector efficiencies (dep. on energy, particle type, detector,...)
- * Essential also for assessing systematic errors
- * Essential for extracting the neutrino energy
- * Many techniques:
 - As good a physics model as possible
 - Simple model with parameters adjusted to data
 - On-line calculation or look-up tables
 - Interpolation, scaling, ...

Generators and Neutrino Data

- * Generators can be tested vs neutrino data
- * Generators can be tuned on neutrino data
- * Neutrino data:
 - Statistics is generally low
 - Limited kinematic range
- * Uncertainties in the neutrino flux: what is the initial neutrino energy?
- * On the bright side:
 - Events similar to what you need
 - Detectors similar to what you need

What about electrons?

- * Electron beams can be prepared with very precise energy (no "flux")
- * Statistics is not an issue
- * Investigation of a large kinematic range possible + identification of reaction channels
- * Stringent test of generators in electron-mode: necessary (but not sufficient) test.

Why electrons are relevant for neutrino physics?

Neutrino-Nucleus scattering

$$\frac{d^2\sigma}{d\Omega_{k'}d\omega} = \sigma_0 \left[L_{CC}R_{CC} + L_{CL}R_{CL} + L_{LL}R_{LL} + L_{T}R_{T} \pm L_{T'}R_{T'} \right]$$

(Unpolarized) Electron-Nucleus scattering

$$\frac{d^2\sigma}{d\Omega d\omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{Q^4}{\vec{q}^4} R_L(q) + \left(\frac{1}{2}\frac{Q^2}{\vec{q}^2} + \tan^2\frac{\theta}{2}\right) R_T(q)\right] = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\sigma_L + \sigma_T\right]$$

Use electrons for testing and improving neutrino-nucleus interactions generators.

Growing and successful community

Article Published: 24 November 2021

Electron-beam energy reconstruction for neutrino oscillation measurements

M. Khachatryan, A. Papadopoulou, A. Ashkenazi ⊡, F. Hauenstein, A. Nambrath, A. Hrnjic, L. B. Weinstein, O. Hen, E. Piasetzky, M. Betancourt, S. Dytman, K. Mahn, P. Coloma, the CLAS Collaboration & e4v Collaboration*

Electron Scattering and Neutrino Physics

A NF06 Contributed White Paper

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

A. M. Ankowski^{*1}, A. Ashkenazi^{*2}, S. Bacca^{*3,4}, J. L. Barrow^{*2,5}, M. Betancourt^{*6}, A. Bodek^{*7}, M. E. Christy^{*8,9}, L. Doria^{*3}, S. Dytman^{*10}, A. Friedland^{*1}, O. Hen^{*5}, C. J. Horowitz^{*11}, N. Jachowicz^{*12}, W. Ketchum^{*6}, T. Lux^{*13}, K. Mahn ^{†14}, C. Mariani^{*15}, J. Newby^{*16}, V. Pandey ^{‡17}, A. Papadopoulou^{*5}, E. Radicioni^{*18}, F. Sánchez^{*19}, C. Sfienti^{*3}, J. M. Udías^{*20}, L. Weinstein^{*21},

L. Alvarez-Ruso²², J. E. Amaro²³, C. A. Argüelles²⁴, A.B. Balantekin²⁵, S. Bolognesi²⁶, V. Brdar^{6,27}, P. Butti¹, S. Carey²⁸, Z. Djurcic²⁹, O. Dvornikov³⁰, S. Edayath³¹, S. Gardiner⁶, J. Isaacson⁶, W. Jay⁵, A. Klustová³², K. S. McFarland⁷, A. Nikolakopoulos⁶, A. Norrick⁶, S. Pastore³³, G. Paz²⁸, M. H. Reno³⁴, I. Ruiz Simo²³, J. E. Sobczyk³, A. Sousa³⁵, N. Toro¹, Y.-D., Tsai³⁶, M. Wagman⁶, J. G. Walsh¹⁴, and G. Yang³⁷

. . .

2022

- March 1 April 1, 2022, "NuSTEC workshop: Improving the art of neutrino nuclei modelling with charged lepton scattering data",
 Tel Aviv, Israel
- January 17-21, 2022, "Neutrino-Nucleus Interactions in the Standard Model and Beyond", CER

202

- November 12, 2021, "Snowmass21 NF06: Low Energy Neutrino and Electron Scattering Workshop, online
- August 23-25, 2021, "Snowmass21 NF06, TF05, TF11, and RF04: Theoretical tools for neutrino scattering: the interplay between lattice OCD, FFTs, puclear physics, phenomenology, and neutrino event generators", online.
- May 10-12, 2021, "Third Nuclear and Particle Theory Meeting: Beyond the Standard Model Physics with Nucleons and Nuclei",
 Washington University in St. Louis, online
- March 15-18, 2021, "New Directions in Neutrino-Nucleus Scattering", online

2020

- Dec. 14, 2020, "Snowmass21 NF06: Electron Scattering Workshop", online
- Sept. 21-23, 2020, "Snowmass21 TF11: Mini-Workshop on Neutrino Theory", online
- Sept. 3-4, 2020, "Snowmass21 NF06: Neutrino Cross Section Data Usage and Archival", online
- Jan. 8-10, 2020, "Generator Tools Workshop", Fermilab, USA

The MAMI Facility

The Racetrack Microton (Institute for Nuclear Physics, U. Mainz)

A1 Spectrometer Facility

	Α	В	С
Configuration	QSDD	D	QSDD
Max.Momentum (MeV)	735	870	551
Solid Angle (msr)	28	5,6	28
Mom. Resolution	10-4	10-4	10-4
Pos. Res at Target (mm)	3-5	1	3-5

feed through

- * Supersonic gas flow from Laval nozzle
- * Supersonic shockwaves and clustering at cryogenic temperatures limit gas diffusion
- * mm-wide collimated gas stream
- * Well tested with hydrogen ("proton target")
- * Successfully operated with <u>argon</u> for the first time: milestone for MAGIX

B.S. Schlimme et al., Nucl. Instr. Meth. Phys. Res. A 1013, 165668 (2021)

S. Grieser et al., Nucl. Instr. Meth. A 906, 120-126 (2018)

Electron Scattering Dataset

MAMI ¹²C data

- * Analysis: M. Mihovilovic (J.Stefan Inst.)
- * GENIE (2.x tune) from A.Ankowski
- * MEC / Resonance region more difficult to describe

* Quasi-Elastic region well described by theory

MAMI ⁴⁰Ar data

- * Data taken in 2022
- * First measurement on argon with jet target
 - Key milestone for MAGIX (see next)
 - Very low background
 - Luminosity to be calibrated
- * More data to analyse

The MESA Facility

MESA: Mainz Energy-Recovery Superconducting Accelerator

Energy Recovery mode:

The beam is reinserted after 3 recalculations in couterphase: the energy goes back to the cavities and the beam is dumped at 5 MeV.

The MAGIX experiment

The MAGIX experiment

Rotation: 15°-165°

Detectors:

- Low-mass GEM-based TPC.
- Plastic Scintillators for triggering and veto.

Timing

- TPC trigger: ~1 ns
- coincidence time STAR↔PORT: ~100 ps

Focal Plane resolutions (p-dependent etc)

• positions: ~100 µm angles: ~3.5 mrad

Expected Resolution

- $dp/p: 6 \times 10^{-5}$
- in-plane angle ϕ_0 : 6.5 mrad
- oop angle θ_0 : 1.6 mrad vertex y_0 : 60 μ m

Acceptances

- momentum acceptance: ± 15 %
- solid angle: 18 msr

(Near?) future: Oxygen

Waterfall target

- * Density = 28 mg/cm^2
- * Laser-monitored
- * Other option: high-pressure target

N. Voegel, J. Friedrich, Nucl. Instr. Meth. 198, 293 (1982)

Summary and Future plans

Available beams:

up to 1.6 GeV at MAMI (10-100 uA current): optimal for T2K, or 1st maximum in DUNE, K-DAR physics, ... 100-150 MeV at MESA (~mA current): interesting for SN neutrinos, DM searches, COHERENT physics, ...

Detectors:

A1@MAMI: 3 magnetic spectrometers, neutron detector, pion spectrometer.

MAGIX@MESA: 2 magnetic spectrometers, silicon detectors.

Targets:

<u>A1</u>: solid-state (e.g. Be, C, Ca, ...), high-P (e.g. O, Ar, Xe), cryogenic (H, 2H, 3H, 3He, 4He), waterfall (H₂O) <u>MAGIX:</u> gas-jet target (H, Ar, Xe, O??, ...). Possibility for solid-state targets.

Physics opportunities:

A1: inclusive and exclusive cross sections (exclusive: real target for neutrino physics and test for generators)

MAGIX: inclusive and exclusive cross sections (test for generators like MARLEY).

Complementarity with a JLab program at higher energies

Interesting for nuclear structure and reactions physics (modern ab-initio theory)

Exclusive channels capabilities:

N(e,e'p)N', N(e,e'pp)N'. Neutron and pion production channels require more study but feasible in principle.

Thank you for your attention!