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Summary of motivation

Long term goal: To analyse the symmetries of nuclear structure in terms of the symmetries of fundamental interactions.

Question: Is there an explicit (algebraic) relation between the symmetries manifested in the structure of atomic nuclei
and the symmetries that emerge in the classical limit of QCD, that is conformal symmetry?

Introduce the unitary limit in low-lying collective nuclear states 

A strong coupling problem
that manifests conformal symmetry.
M. Randeria, W. Zwerger, M. Zwierlein,
BCS to BEC Crossover and the Unitary Fermi Gas,
Springer-Verlag, Berlin (2012);
D.T. Son, Phys. Rev. D 78 (2008) 046003.

In the group theoretical framework of the Interacting Boson Model
F. Iachello, A Arima, “The Interacting Boson Model”, Cambridge University Press (1987)



Unitary limit
Scattering problem at infinite scattering length that supports a bound state. Manifests
Non-Relativistic Conformal symmetry, the BCS-BEC crossover and a quantum critical
point.

• T. Mehen, I. W. Stewart and M. B. Wise, “Conformal Invariance in Non-Relativistic Field Theory”, 
Phys. Lett. B, 474, 145 (2000).

• I. Stetcu, J. Rotureau, B.R. Barrett, U. van Kolck, “Two and Three Nucleons in a Trap and the
Continuum Limit” Ann. Phys. 325, 1644 (2010).

• S Konig, H. W. Griesshammer, H.-W. Hammer and U.van Kolck “Nuclear Physics around the 
Unitarity limit”, Phys. Rev. Lett. 118, 202501 (2017).
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Experimentally, the unitary limit is achieved in systems of trapped cold atoms: 
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Elaborated in light nuclei in the framework of EFTs:



Unitary limit in trapped cold atoms: Symmetry-based approach

𝜔 = 0

E= 0

F Werner and Y Castin, Phys Rev A, 74, 053604 (2006)
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Take the ‘’free’’ Hamiltonian 𝑯 = σ𝒊=𝟏
𝑵 𝒑𝒊

𝟐

𝟐𝑴
, 

the potential 𝑲 =
𝟏

𝟐
𝑴𝝎𝟐𝑹𝟐, with 𝑹𝟐 = σ𝒊=𝟏

𝑵 𝒓𝒊
𝟐 .

Define the Operator 𝑫 = 𝑹
𝝏

𝝏𝑹

The operators H,K,D close under the one-dimensional conformal group.
This is isomorphic to the SO(2,1) group.

V. de Alfaro, S. Fubini, G. Furlan, Nuovo Cim. 34A 569 (1976); 
L.P. Pitaevskii, A. Rosch, Phys. Rev. A 55 (1997) R853;
T. Mehen, Phys. Rev. A 78, 023614 (2008).

Unitary limit: 𝑎 → ∞
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Zero energy state + 
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Feshbach resonances in systems of cold atoms
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Experimentally the scattering length 
is tuned by an external magnetic field B:

The unitary limit is achieved by the appropriate
Magnetic field:

E. Timmermans, P. Tommasini, M. Hussein, 
A. Kerman, Physics Reports 315 (1999) 230.

Intermediate molecular
states of the Feshbach
Formalism in systems
of cold atoms: Manifest
the unitary limit.

Unitary limit
for low-lying collective
nuclear states?



Interacting Boson Model

0L =

2L = s and d bosons represent
paired valence nucleons of 
angular momentum zero and
two. 

Collective motion and Structural Evolution
is mainly characterized by the valence nucleons.
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The low-lying collective nuclear states sit in the 
representations of the
U(6) symmetry group.
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F. Iachello, A. Arima, The Interacting
Boson Model, Cambridge University
Press, 1987.

U(6)

P E Georgoudis A+2n compound nucleus and the unitary limit in nuclear physics

A Heavy even-even nucleus
is represented by a fixed 
Boson number:
𝑵𝒃 = 𝑵𝒅 + 𝑵𝒔. 
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P E Georgoudis O(6) limit of the IBM

2
5 2 2

5 2

1 ( 4) 1 6
( ) ( ) ( )

2 2 2
bM N

M

 
      

   

 −   +  
−  +  = +   

    

O. Castanos, E. Chacon, A. Frank and M. Moshinsky,
J. Math Phys 20, 35 (1979) 

This is the radius of the 
Number of bosons
operator in the IBM

The Interacting Boson Model in the O(6) limit

A geometric representation
of the d=6 harmonic
Oscillator of the IBM in the O(6) limit:
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3 Euler angles, gamma
Unstable rotations and 
Deformation.
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The Schrodinger equation of N=2 trapped cold atoms: Obeys the O(6) symmetry:

Make an algebraic comparison of each radial term with the IBM equation in the O(6) limit:

Define the IBM-compound Hamiltonian and its reaction channels: ( ) ( ) ( ), n n
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P.E. Georgoudis, Nucl. Phys. A, 1015, 122297 (2021)



Model the A+2n compound nucleus at low temperature in analogy with cold and dilute atomic gases:

The fermionic cold atoms form diatomic molecules of bosonic character around Feshbach resonances:

Unitary atom-atom interaction + unitary molecule-molecule interaction:

Unitary neutron-neutron interaction    +
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Pair-Collective state unitary interaction

( ) ( ) ( )
3 2

0 0 4 40

4 1
: lim ,r

r
r

a C
r r

M r a


  

→

 
 =  − 

 

D.S. Petrov, C. Salomon, G.V. Shlyapnikov,
Phys. Rev. Lett. 93 (2004) 090404

2
5 †

5 2

1 ( 4)
( )

2
cH r H s s

M r r r r

 


−   + 
= − + + + 

  

(nucleon-nucleon) (boson-boson in the IBM)

(a low-lying resonance)
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The analog of the 
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Effective range for the pair-collective state interaction: 
Measurable via the width of the intermediate state:
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That scattering is characterized by a pair-collective state scattering length:

Pair scattering in O(6) symmetry: 
6-d geometry for the scattering:

( )

( )

3

2 2 2

1 22 2

4
,

1
r

r r r

k k k
a k k


 = = +

+

Write down the pair-collective state scattering length
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Intermediate states of the IBM-compound Hamiltonian 𝑯𝒄:
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Stationary states of the A+2n compound system
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H. Feshbach, A.K. Kerman, R.H. 

Lemmer, Ann. Phys. 41, 230 (1967)

energy of the intermediate state
formed by the incident 2n with the
target nucleus.
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The zero-energy 
solution in the 
equation of the 
intermediate state

A trapped state in the
IBM Harmonic Oscillator

Solve the closed 
channel equation

IBM (target) state: 



Intermediate states of the IBM-compound Hamiltonian 𝑯𝒄:
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Stationary states of the A+2n compound system
(trapped IBM states in 𝑯𝒄 )

Unitarity

H. Feshbach, A.K. Kerman, R.H. 

Lemmer, Ann. Phys. 41, 230 (1967)

energy of the intermediate state
formed by the incident 2n with the
target nucleus.

The intermediate state 
behaves as a pure
IBM state in the 
continuum
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A zero-energy solution for the intermediate state that satisfies 
the boundary condition of the unitary interactions: 
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P: Open Channel,
Q: Closed channel

Target states in
the continuum

The energy of the ground state of 
the target nucleus in the IBM

The tuning of the energy of the open channel
Resulting from the incident 2n onto the target
state
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The crossing of the energy of the 𝟐𝒏 + 𝑵𝒃 open channel with the energy of the
𝑁𝑏 + 1 closed channel manifests the unitary limit: A low-lying resonance resulting
from the capture of the 2n as an s boson.
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Intermediate States of the Feshbach Formalism: 
Application for IBM states in the continuum:

A+2n Compound nucleus

Fluctuation:
Tunes the 
scattering length
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P.E. Georgoudis, Nucl. Phys. A, 1015, 122297 (2021)

E. Timmermans, P. Tommasini, M. Hussein, 
A. Kerman, Physics Reports 315, 230 (1999);

G.E. Mitchell, A. Richter, H.A. Weidenmuller, 

Rev. Mod. Phys. 82 (2010) 2845;
H. Feshbach, Rev. Mod. Phys. 46 (1974) 1
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Tuning of the scattering length via the fluctuation of the cross section
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Connection with the experiment
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Consequence: Conformal Symmetry in the intermediate states 
of the A+2n compound nucleus

A Tower of equally spaced states represents
the SO(2,1) group.

P.E. Georgoudis, Nucl. Phys. A, 1015, 122297 (2021)
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One expects a regularity pattern of
fluctuations of the cross section
with determined energies and widths.
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Conformal group  in one 
dimension.



Conclusions
• In nuclear physics, the tuning of the scattering length is imprinted on the fluctuations of the 

cross-sections.

• The unitary limit manifests itself in a heavy even-even A+2n compound nucleus when the 
resonance formed by the incident neutron pair on a heavy even-even target has the energy of 
one boson more with respect to the energy of the ground state of the target. This energy 
difference is the two-neutron separation energy.

• For the compound elastic case, the width of the resonance is provided for connection with the 
experiment.

The unitary limit of the neutron pair with the collective ground state of the even-even target,
hosts the representations of the one-dimensional conformal group.

A regularity pattern of the fluctuations of the cross section emerges
at the unitary limit of the A+2n compound nucleus in contrast with their
usual random appearance in A+1n compound nuclei.



THE END



Backup Slides



Analogy of the magnetic field with the boson number:
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For the IBM-compound Hamiltonian 𝑯𝒄 solve the coupled
channel equations in the Feshbach Formalism:
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Pair wavefunction for the open channel: 𝑷𝚿 𝐫, 𝛒 = 𝚿𝟎 𝒓 .
Switch off the couplings and solve the first equation
after the transformation 𝚿𝟎 𝒓 = (𝒓−𝟐)χ(r):
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Pair scattering in O(6) symmetry: 
6-d geometry for the scattering

( )
( ) ( )

( ) ( )0 05/2 5/2

exp exp
lim , exp 2 exp 2

r r

r r
r

ik r ik r
r S S i ik a

r r


→

−
 = − = = −

( )
( ) ( ) ( )02 (1)

0 2 0 2 5 /4

0 2 2

1
8 ,

2 2

i

r r i

r r

eN k r H k r
r C C e

r ik r k



+ +
 −
  = + =
 
 

Solution for the s wave
In terms of Bessel functions
Of order λ+2

Boundary condition of the pair wavefunction at infinity in d=6:

The open channel solution (n=0)
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Boundary condition near the reaction center: Unitary interaction for 
the pair-collective state  interaction in d=6:
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O(6) Symmetry in the Hyperspherical Equation

Schrodinger Equation of N 
trapped particles in 
hyperspherical coordinates
F Werner and Y Castin, Phys Rev A, 74, 

053604 (2006); J.L. Bohn, B.D. Esry, 
C.H. Greene, Phys. Rev. A 58, 584 
(1998).
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1. The hyperspherical equation of N particles confined in the harmonic Oscillator trap

( ) ( )2 2 1 1
1 2 5 1 1 2 2

2

2, , : , , , , tan
r

N R r r
r

     −  = = +  =  
 

𝑹

P.E. Georgoudis, Nucl. Phys. A, 1015, 122297 (2021)

1 2 :l l = + The total angular momentum of the N=2 particles - the eigenvalue 

of the dilatation operator 𝑫 = 𝑹
𝝏
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d=6:
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The Schrodinger equation of N=2 trapped cold atoms: Obeys the O(6) symmetry:

Make an algebraic comparison of each radial term with the IBM equation in the O(6) limit:

1. Apply the symmetry-based approach to the zero-energy state in the IBM equation :

𝜔 = 0,

( )0 

 =  
,

6
, 2

2
J b bE N N J  

 
= + = + 
 

: → the eigenvalue of the dilatation operator 𝑫 = 𝝆
𝝏

𝝏𝝆

6
0

2
E = 

core

valence



1r

2r
2 2 2

1 2R r r= +

core

valence


r R = −

Pair scattering in O(6) symmetry: 
6-d geometry for the scattering and
the trapped states.

The choice of the core’s position as the origin
is an application of the more general case of 

the interaction of two similar particles with a 
fixed potential field represented by a heavy 
third body
P.M. Morse, H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, Boston, 1999, pp. 1709–1745;
U. Fano, Rep. Prog. Phys. 46, 97 (1983)

( ) ( ) ( , )cH H r H H r = + +

( )
2

1 2
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r
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T r r

M


+ −
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5 2
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2
r

M r r r r

 −   + 
− 
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b IBM bN H N

What is this coupling
Term? Examine the case
That leads to a resonance between
the two neutrons and the
Collective state: A+2n compound
nucleus in the Feshbach formalism

Replace the Woods-Saxon term
By appropriately defined unitary
Interactions between the incident
Neutrons and the collective nuclear
state

Solve the scattering problem for the neutron pair in 
terms of partial waves that are characterized by the 
O(6) angular momentum λ: Solutions in termσ of Bessel
Functions of order λ+2.



Conformal transformation in one dimension:

Comparison with tower states in elongated Bose-Einstein condensates:

( ) ( , )t   → ( )t


 


→ =

2

'
( )

( ')

t

o

dt
t

t



= 

• Consequence: 

5

4R R S+ 

5S 𝝆(𝒕)

𝒒𝟎

𝜷

s boson coordinate

Tower of equally spaced states (T.S) appear as a regularity pattern of a sequence
Of fluctuations of the cross section

P.E. Georgoudis, Nucl. Phys. A, 1015, 122297 (2021)



Quantum Phase Transitions in the IBM

O(6)

U(5) SU(3)

2nd orderSpherical 
phase

Deformed phase

1st order

Implies conformal invariance that is manifested at the critical point 
of a 2nd order Phase Transition.

P E Georgoudis IBM, E(5) and conformal invariance

P. Cejnar, J. Jolie, R.F. Casten, Rev. Mod. Phys. 82, 2155, (2010) and references therein.

spherical

γ-unstable

prolate

Critical Point Symmetries:
E(5) for the critical point of the
U(5)-O(6) Quantum Phase Transition

F. Iachello, Phys. Rev. Lett. 85 (2000) 3580
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P E Georgoudis arXiv: 1903.05426, (2019) O(6) Symmetry in the Hyperspherical Equation

Schrodinger Equation of N trapped particles: E=0 and ω=0 Unitarity
F Werner and Y Castin, Phys Rev A, 74, 053604 (2006)
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An Algebraic Comparison

1. The hyperspherical equation of N particles confined in an harmonic Oscillator trap

2N =
𝑹
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The Schrodinger equation of N=2 trapped cold atoms: Obeys the O(6) symmetry:

Make an algebraic comparison of each radial term with the IBM equation in the O(6) limit:

2. Define the reaction channel that consists of two incident neutrons (solution of the hyperspherical
equation) and the collective state of the target nucleus (solution of the IBM equation)

𝝆(𝒕)

𝒒𝟎

𝜷

2n

P.E. Georgoudis, Nucl. Phys. A, 1015, 122297 (2021)

0 : = An incident s wave of two neutrons (2n) onto
the collective nuclear state

( ) :t The boson number radius is the collective coordinate of the
target nucleus


