



13th INTERNATIONAL SPRING SEMINAR ON NUCLEAR PHYSICS

Perspectives and Challenges in Nuclear Structure after 70 Years of Shell Model

SANT'ANGELO D'ISCHIA, MAY 15-20, 2022

# Latest results from the CUORE experiment

Elena Ferri – INFN Milano-Bicocca on behalf of the CUORE collaboration



**Double beta decay:** second order nuclear process, alternative to beta decay when forbidden by negative mass difference for some even-even nuclei

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$ 

2nd order SM process, observed on nuclei with  $T_{\rm 1/2} \sim 10^{18\text{-}24}$  years

 $(A,Z) \rightarrow (A,Z+2) + 2e^-$ 



→ SM forbidden, lepton number violation
 → if observed, then neutrino is a Majorana particle

→ underlying mechanism can give insight into BSM physics:

- light neutrino mass scale and hierarchy
- heavy, sterile neutrinos

Effective neutrino mass  $m_{\beta\beta}$ :

- measures the intensity of the new-
- physics involved in the process - compares different isotopes



# Searching for $0\nu\beta\beta$



Searching for a peak at the Q value of the decay

Sensitivity in presence of background:



### Resolution and background play an important role in sensitivity

### CUORE Experiment





> 110 scientists
 27 Institutions
 4 countries





### Cryogenic Underground Observatory for Rare Events

Main goal: search for  $0\nu\beta\beta$  decay of <sup>130</sup>Te

### Design:

- closely packed modular array of 988 natural TeO  $_{_2}$  crystals arranged in 19 towers
- Large mass: 742 kg of TeO  $_{\rm 2}$  ,206 kg of  $^{\rm 130}{\rm Te}$
- Low background goal: 10<sup>-2</sup> cts/(keV kg yr)
  - $\rightarrow$  high granularity
  - $\rightarrow$  deep underground location (LNGS, Italy) @3600 mwe
  - $\rightarrow$  strict radio-purity controls on materials and assembly
  - $\rightarrow$  passive shielding
- Energy resolution: Goal of 5 keV FWHM at  $Q_{_{\beta\beta}}$
- High efficiency and duty cycle

### Sensitivity:

```
T^{0v}_{1/2} \sim 9 \times 10^{25} yrs (90% C.L) in 5 yrs
```

```
m_{_{\beta\beta}} < 50-130 meV
```



# Experimental technique: low temperature detectors



### Low temperature detectors:

- macroscopic (hundreds of grams) crystals instrumented with thermistors operated @10 mK  $\rightarrow$  low thermal capacity
- energy deposition in absorber == source detected as temperature variation
- large active mass and efficiency per unit cost
- fully active sensitive volume, no dead-layer  $\rightarrow$  simple response function  $\rightarrow$  high energy resolution, clear signature

### Each detector:

- $\rightarrow$  Absorber: 5x5x5 cm<sup>3</sup> TeO<sub>2</sub> crystal
- $\rightarrow$  Sensor: Ge neutron transmutation doped (NTD) thermistor
- $\rightarrow$  Heater: Gain calibration
- Excellent energy resolution (~0.2%  $\Delta$ E/E FWHM)
- Detector response independent of particle type
- Flexibility in  $0\nu\beta\beta$  candidate choice





## Isotope choice



- 34 % natural isotopic abundance
- Q<sub>ββ</sub> (2528 keV)
  - $\rightarrow$  Above most  $\gamma$  natural radioactivity
  - $\rightarrow$  Background from  $2\nu\beta\beta \sim 1/Q^5$
- Isotope within the absorber
- Reproducible growth of high quality TeO<sub>2</sub> crystals with low contamination



## CUORE Cryostat



- Almost 1.5 t of material cooled at operational T ~ 10 mK, stable over years
- Background level goal of 10<sup>-2</sup> counts/(keV kg yr):
  - $\rightarrow$  low-radioactivity materials choice, strict cleaning and assembling protocols
  - $\rightarrow$  Roman <sup>210</sup>Pb-depleted + modern lead shields
  - $\rightarrow$  Neutrons shield: external polyethylene layer with boric acid panels
- Energy resolution < 8 keV FWHM at <sup>130</sup>Te Q<sub>BB</sub>:
  - $\rightarrow$  Minimization of vibrational noise: external support structure mechanically decouples the detectors from the cryostat



# Data Taking

- Data taking organization: runs (physics, calibration, test,...)
- 1 Dataset (40 60 days) = initial calibration runs + physics runs + final calibration runs
- 2017 beginning of 2019: mostly devoted to cryogenic interventions and detector optimizations
- After detector upgrades, continues data taking with low downtime
- 17 datasets completed, each dataset ~1 month long (> 1600 kg yr data collected)
- 15 datasets analyzed (1038.4 kg.yr)
- Continue to take data

Stability of operation for ton-scale cryogenic detector is a fundamental milestone for future generation experiments (CUPID)



Calibration

**NPulses** 

Test



Background

Down Time

Setup











# CUORE

#### Line shape response function

- 2615 keV calibration gamma line is used to model the detector response to monochromatic electron-like energy deposition

- Model = 3 gaussians (signal) + X-ray escape + flat background + multicompton shoulder

- Signal parameters are defined on channel/dataset basis
- Exposure-weighted average FWHM: 7.78(3) keV



#### Response scaling



Signal parameters are scaled to ROI energy by fitting peaks in the background spectrum - FWHM = 7.8(5) keV
Signal parameters fixed in the final fit to ROI
Uncertainty in the scaling included as nuisance parameters in systematics fit
Line shape also used to estimate energy scaling bias (< 0.7 keV @Q<sub>BB</sub>)



| Channel/run     | Reconstruction                | <ul> <li>→ trigger</li> <li>→ energy reconstruction</li> <li>→ pile-up rejection</li> </ul> | Heater pulses                                     | 96.418(2) % |
|-----------------|-------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|
| Chappel/dataset | Anti-coincidence              | Probability of identifying single-site event                                                | ⁴⁰K gamma line @1460<br>keV                       | 99.3(1) %   |
| ChanneyGalaset  | Pulse-shape<br>discrimination | Probability of keeping a physical event                                                     | Multiple gamma lines<br>in background<br>spectrum | 96.4(2) %   |
|                 | Total analysis                |                                                                                             |                                                   | 92.4(2) %   |
|                 | Containment                   | Geometry and electrons interaction                                                          | МС                                                | 88.35(9) %  |

## Fit Details

CUORE

- Unbinned Bayesian fit over all datasets
- Bayesian Analysis Toolkit (BAT)
- Fit region [2490,2575] keV
- Systematics implented as nuisance parameters



### **Fit Parameters**

- $\rightarrow$  0v $\beta\beta$  decay rate @ 2527.518 keV
- →<sup>60</sup>Co sum peak amplitude
- $\rightarrow$  Background index
- $\rightarrow$  Background slope
- Systematics:
  - $\rightarrow$  Analysis efficiencies
  - $\rightarrow$  Containment efficiency
  - $\rightarrow$  Energy resolution
  - $\rightarrow$  Energy scale
  - $\rightarrow Q_{\beta\beta}$
  - $\rightarrow$  <sup>130</sup>Te abundance

## ROI fit





- No evidence of  $0\nu\beta\beta$
- Best fit rate: (0.9±1.4)x10<sup>-26</sup> yr<sup>-1</sup>
- Background index =1.49(4)x10<sup>-2</sup> cts/keV/kg/yr
- $T^{0v}_{1/2}$ > 2.2 x 10<sup>25</sup> yr at 90% C.I

(numbers from Bayesian analysis)







- Sensitivity calculated by generating 10k toy experiments assuming no signal

- → Toys generated using linear background and <sup>60</sup>Co components
- $\rightarrow$  Fit with signal + background
- Median expected T<sup>0</sup>′<sub>1/2</sub> = 2.8 x 10<sup>25</sup> yr at 90% C.I
- Probability of getting a stronger limit is 72%





- Assuming light neutrino exchange:

m<sub>ββ</sub> < 90 - 305 meV

- Range dominated by uncertainties in NME
- Target sensitivity in 5 yr data taking:

 $m_{\beta\beta} < 50 - 130 \text{ meV}$ 





- $2\nu\beta\beta$  decay has a continuum spectrum from 0 keV to  $Q_{_{\beta\beta}}$
- $2\nu\beta\beta$  contribution to the CUORE spectrum can be disentangled through the Background Model fit
- CUORE background model: 60 radioactive contaminants + muons +  $2\nu\beta\beta$
- $2\nu\beta\beta$  rate extracted from MC multi dimensional fit (M1, M2, M2sum) of gamma region with 60+ components (Geant4 simulated contaminations) including  $2\nu\beta\beta$







Most precise measurement of  $^{130}\text{Te}$   $2\nu\beta\beta$  decay half-life to date obtained with of 300.7 kg·yr exposure dataset

$$T_{1/2}^{2\nu} = 7.71_{-0.06}^{+0.08} (\text{stat})_{-0.15}^{+0.12} (\text{syst}) \cdot 10^{20} \text{ yr}$$

Phys. Rev. Lett., 126:171801,2021

## CUORE science program

CUORE

- Other recently published high level analysis:
  - $^{130}$ Te 0v and 2v to excited states (<u>10.1140/epjc/s10052-021-09317-z</u>)
- Upcoming papers (short term):
  - $^{120}$ Te 0v
  - <sup>128</sup>Te 0ν
  - Full-spectrum Background Model  $\rightarrow$  input to CUPID background budget
  - Long term plan:

٠

- Data taking to be continued until 3 ton\*yr exposure is collected (expected end 2024)
- $^{130}$ Te 0v with improved topological analysis (M1 + M2)
- $^{120}$ Te 0v and 2v
- $^{128}$ Te  $0\nu$  and  $2\nu$
- $^{130}$ Te 0v combined ground state and excited states, with topological analysis (final publication)
- High-multiplicity BSM processes (tri-nucleon decay, electron decay, etc...)
- Low energy:
  - DM direct detection
  - Axion searches
  - Sensitivity to neutrino coherent scattering (galactic SN detection)

## Conclusion



### Experimental technique:

- $\rightarrow\,$  Currently the largest solid state and low temperature detector for the search of  $0\nu\beta\beta$
- $\rightarrow$  Array of 988 crystals of natural TeO<sub>2</sub> crystals for total active mass of 742 kg (206 kg of <sup>130</sup>Te)
- $\rightarrow$  Operated in one of the largest DU-based cryostats in the world @10 mK

### Operation and data taking:

- $\rightarrow$  data-taking ongoing since 2017
- $\rightarrow$  from January 2019  $\rightarrow$  93% duty cycle
- $\rightarrow$  1 tonne-yr exposure collected and analysed

 $\rightarrow$  stability of operation for ton-scale cryogenic detector: fundamental milestone for future upgrades (CUPID)

### Latest physics results:

- $\rightarrow$  most sensitive search for  $0\nu\beta\beta$  in <sup>130</sup>Te: T<sub>1/2</sub> > 2.2x10<sup>25</sup> yr with median sensitivity 2.8x10<sup>25</sup> yr
- ightarrow most accurate and precise measurement of  $^{130}$ Te half life through 2
  uetaeta

 $\rightarrow$  many more results to come: updated  $0\nu\beta\beta$  every new tonne-yr of exposure, decays to excited states, low energy processes, fundamental symmetries violations, etc.



