Wafer-scale nanofabrication of single telecom quantum emitters in silicon

<u>M. Hollenbach^{1,2}</u>, N. Klingner¹, N. S. Jagtap^{1,2,} L. Bischoff¹, C. Fowley¹, U. Kentsch¹, G. Hlawacek¹, A. Erbe¹, N.V. Abrosimov³, M. Helm^{1,2}, Y. Berencén¹ and G.V. Astakhov¹

¹Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden, Germany ²Technische Universität Dresden, 01062 Dresden, Germany ³Leibniz-Institut für Kristallzüchtung (IKZ), 12489 Berlin, Germany

LEAPS meets Quantum Technology 15-20 May 2022

FWIM - Quantum Technology and Materials PhD Student

1. Motivation

- 2. State of the art: G-center in Silicon
 - Atomic configuration
 - Creation
- 3. Experimental setup
 - Single-defect spectroscopy (CFM)
 - Hanbury-Brown & Twiss (HBT) experiment
- 4. Experimental results
 - FIB writing of single telecom quantum emitters (FIB)
 - Wafer-scale fabrication of single telecom quantum emitters (PMMA)
- 5. Outlook
- 6. Summary

On-chip quantum photonics in a silicon on insulator (SOI) platform

Required properties of single-photon emitters:

- Purity
- On-Demand
- Brightness
- Stability

M. Schwartz et al. Nano Lett. 2018, 18, 11, 6892–6897

Monolithic semiconductor - superconductor quantum circuit in silicon

On-chip quantum photonics in a silicon on insulator (SOI) platform

Required properties of single-photon emitters:

- Purity
- On-Demand
- Brightness
- Stability

M. Hollenbach et al. :"Engineering telecom single-photon emitters in silicon for scalable quantum photonics", Optics Express Vol. 28, Issue 18, pp. 26111-26121 (2020)

ano 1 1/05/202	Mamber of the Helmholtz Association
aye 4 14/05/202	
	Michael Hollenbach I m.hollenbach@hzdr.de I www.hzdr.de

How to create "artificial atoms" in an SOI wafer?

Laboratoire Charles Coulomb, France

Single artificial atoms in silicon emitting at telecom wavelengths Methods

W. Redjem¹,* A. Durand¹,* T. Herzig², A. Benali³, S. Pezzagna², J. Meijer², A. Yu. Kuznetsov⁴, H. S. Nguyen⁵, S. Cueff⁵, J.-M. Gérard⁶, I. Robert-Philip¹, B. Gil¹, D. Caliste⁶, P. Pochet⁶, M. Abbarchi³, V. Jacques¹, A. Dréau¹,[†] and G. Cassabois¹ Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France

 $\Rightarrow High fluence C-broad-beam irradiation$ + RTA at 1000 °C (5x 10¹³ cm⁻², 36 keV)

Nature Electronics volume 3, pages 738–743 (2020)

How to create "artificial atoms" in an SOI wafer?

Laboratoire Charles Coulomb, France

Single artificial atoms in silicon emitting at telecom wavelengths Methods

W. Redjem¹,* A. Durand¹,* T. Herzig², A. Benali³, S. Pezzagna², J. Meijer², A. Yu. Kuznetsov⁴, H. S. Nguyen⁵, S. Cueff⁵, J.-M. Gérard⁶, I. Robert-Philip¹, B. Gil¹, D. Caliste⁶, P. Pochet⁶, M. Abbarchi³, V. Jacques¹, A. Dréau¹,[†] and G. Cassabois¹ Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France

 $\Rightarrow High fluence C-broad-beam irradiation$ + RTA at 1000 °C (5x 10¹³ cm⁻², 36 keV)

Massachusetts Institute of Technology, USA

Individually Addressable Artificial Atoms in Silicon Photonics

Mihika Prabhu^{1,†}, Carlos Errando-Herranz^{1,2,†}, Lorenzo De Santis^{1,3},
Ian Christen¹, Changchen Chen¹, and Dirk Englund^{1,}
¹Massachusetts Institute of Technology, Cambridge, USA
²University of Münster, Münster, Germany
³QuTech, Delft University of Technology, Delft, Netherlands

$\Rightarrow High fluence C-broad-beam irradiation$ + RTA at 1000 °C (1x 10 ¹³ cm⁻², 36 keV)

Nature Electronics volume 3, pages 738–743 (2020)

arXiv:2202.02342v1 (2022)

How to create "artificial atoms" in an SOI wafer?

Laboratoire Charles Coulomb, France

Single artificial atoms in silicon emitting at telecom wavelengths Methods

W. Redjem¹,* A. Durand¹,* T. Herzig², A. Benali³, S. Pezzagna², J. Meijer², A. Yu. Kuznetsov⁴, H. S. Nguyen⁵, S. Cueff⁵, J.-M. Gérard⁶, I. Robert-Philip¹, B. Gil¹, D. Caliste⁶, P. Pochet⁶, M. Abbarchi³, V. Jacques¹, A. Dréau¹,[†] and G. Cassabois¹ Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France

 $\Rightarrow High fluence C-broad-beam irradiation$ + RTA at 1000 °C (5x 10¹³ cm⁻², 36 keV)

14/05/2022

Massachusetts Institute of Technology, USA

Individually Addressable Artificial Atoms in Silicon Photonics

Mihika Prabhu^{1,†}, Carlos Errando-Herranz^{1,2,†}, Lorenzo De Santis^{1,3}, Ian Christen¹, Changchen Chen¹, and Dirk Englund^{1,*} ¹Massachusetts Institute of Technology, Cambridge, USA ²University of Münster, Münster, Germany ³QuTech, Delft University of Technology, Delft, Netherlands

 $\Rightarrow High fluence C-broad-beam irradiation$ + RTA at 1000 °C (1x 10¹³ cm⁻², 36 keV)

Random positioning of single defects - No controlled creation !

Member of the Helmholtz Association
Michael Hollenbach I m.hollenbach@hzdr.de I www.hzdr.de

On-chip quantum photonics in a silicon on insulator (SOI) platform

Focus of the talk: Controllable creation of single G-centers with sub-100-nm precision

M. Hollenbach et al. :"Wafer-scale nanofabrication of telecom single-photon emitters in silicon", arXiv:2204.13173 (April 2022)

age	8				
-----	---	--	--	--	--

What is the G-center ?... carbon related atomic-sized luminescence center in silicon

P. Udvarhelyi et al. : "Identification of a Telecom Wavelength Single Photon Emitter in Silicon", Phys. Rev. Lett. 127, 196402 (2021)

Member of the Helmholtz Association	14/05/2022	age 9
Michael Hollenbach I m.hollenbach@hzdr.de I www.hzdr.de		

What is the G-center ?... emitting in the telecom O-band (1260 - 1360 nm)

⇒ Excellent light source for fiber-optic communications

How to read-out the G-center ? ...home-built LT confocal microscope (CFM)

Irradiation layout

Single dot writing (15 x 16 spots)

Special thanks to N. Klingner and L. Bischoff

Irradiation layout

2D confocal photoluminescence maps

Irradiation layout

2D confocal photoluminescence maps

Local irradiation sites are masked by the background fluorescence \Rightarrow 1nm BP filter

Page 14

2D confocal PL map

Line 3: (25 ± 5) Si ions/spot

1nm Bandpass

Diffraction-limited spots = single telecom photon emitter ?

Page 16

Focused ion-beam writing of G-centers using Si-FIB (LMAIS)

Single Emitter: Never two photons at a time = no coincident counts at zero time delay

14/05/2022 Member of the Helmholtz Association Michael Hollenbach I m.hollenbach@hzdr.de I www.hzdr.de

First demonstration of controllable fabrication of single-telecom photon emitters in Si!

Wafer-scale nanofabrication of single telecom quantum emitters - Broad beam Si ions

PMMA design / SEM image

Si⁺⁺, 1x 10¹² cm⁻², 40 keV

	J	U	Т	U	U	T	U	Т	U	T	U	U	TU	U	U	U	U	U	U	U			
Lay	0	U	t								2)(П	n					S	E	Μ	
															636						A STATE		
—Ø 30 nm	0	0	0	0	0	0	0	0	0	0													
—Ø 36 nm	0	0	0	0	0	0	0	0	0	0													4
—Ø 40 nm	0	0	0	0	0	0	0	0	0	0													
—Ø 46 nm	0	0	0	0	0	0	0	0	0	0													
—Ø 50 nm	0	0	0	0	0	0	0	0	0	0													5
⊨Ø 56 nm	0	0	0	0	0	0	0	0	0	0													
⊨Ø 60 nm	0	0	0	0	0	0	0	0	0	0													4
⊨Ø 66 nm	0	0	0	0	0	0	0	0	0	0													-
—Ø 70 nm	0	0	0	0	0	0	0	0	0	0													-
—Ø 76 nm	0	0	0	0	0	0	0	0	0	0	•												4
—Ø 80 nm	0	0	0	0	0	0	0	0	0	0													4
=Ø 86 nm	0	0	0	0	0	0	0	0	0	0													4
—Ø 90 nm	0	0	0	0	0	0	0	0	0	0													4
—Ø 96 nm	0	0	0	0	0	0	0	0	0	0		-				•	•						24
🗕 Ø 100 nm	0	0	0	0	0	0	0	0	0	0		17.0				-	-	-	•	-			
—Ø 124 nm	0	0	0	0	0	0	0	0	0	0													4
Ø 150 nm	0	0	0	0	0	0	0	0	0	0		•		•									4
⊨Ø 200 nm	0	0	0	0	0	0	0	0	0	0	•	•	•	•									e.
—Ø 300 nm	0	0	0	0	0	0	0	0	0	0				•			•						4
=Ø 400 nm	0	0	0	0	0	0	0	0	0	0		•		•	•	•	•	•	•	•			Z
a 2000-	\sim	0	-																				
2000 nm	0	0	0	0	0	0	0	0	0	0	9					•	•	•	•	•		-	
	Π	N	1	Π	1	1	Π	1	Λ	1	1	1	1	1	1	1	1	1	1	1			

Nanohole layout Mask implantation (20 x 20 sites)

Special thanks to N. Jagtap, C. Fowley and U. Kentsch

Member of the Helmholtz Association

Michael Hollenbach I m.hollenbach@hzdr.de I www.hzdr.de

Wafer-scale nanofabrication of single telecom quantum emitters - Broad beam Si ions

PMMA design / SEM image

Si⁺⁺, 1x 10¹²cm⁻², 40 keV

	U	U	Т	U	U	U	U	Т	U	U	V	U	Tu	V	U	V	U	Ù	U	U			
Lay	0	u	t								5)(П	ĩ					S	E	M	
																					1		
—Ø 30 nm	0	0	0	0	0	0	0	0	0	0													F
=Ø 36 nm	0	0	0	0	0	0	0	0	0	0													4
⊨Ø 40 nm	0	0	0	0	0	0	0	0	0	0													4
—Ø 46 nm	0	0	0	0	0	0	0	0	0	0													F
⊨Ø 50 nm	0	0	0	0	0	0	0	0	0	0													5
—Ø 56 nm	0	0	0	0	0	0	0	0	0	0													5
⊨Ø 60 nm	0	0	0	0	0	0	0	0	0	0													e.
—Ø 66 nm	0	0	0	0	0	0	0	0	0	0													5
—Ø 70 nm	0	0	0	0	0	0	0	0	0	0													-
⊨Ø 76 nm	0	0	0	0	0	0	0	0	0	0													4
⊨Ø 80 nm	0	0	0	0	0	0	0	0	0	0													4
⊨Ø 86 nm	0	0	0	0	0	0	0	0	0	0													4
⊨Ø 90 nm	0	0	0	0	0	0	0	0	0	0					•								
—Ø 96 nm	0	0	0	0	0	0	0	0	0	0			•			•	•						
🗕 Ø 100 nm	0	0	0	0	0	0	0	0	0	0		1.								-			4
⊨Ø 124 nm	0	0	0	0	0	0	0	0	0	0					•								4
⊨Ø 150 nm	0	0	0	0	0	0	0	0	0	0		•		•				•	-				e.
⊨Ø 200 nm	0	0	0	0	0	0	0	0	0	0	•	•	•	•	•								4
—Ø 300 nm	0	0	0	0	0	0	0	0	0	0	•	•		•			•						4
⇒Ø 400 nm	0	0	0	0	0	0	0	0	0	0				•	•	•	•	•	•	•			4
a 2000		\circ	\sim	\circ	0	\circ	\circ	0	\circ	0	-												
2000 nm	0	0	0	0	0	0	0	0	0	0	9				9		•					-	_
	Π	1	I	Π	0	Π	Π	I	1	1	1	1	1	1	1	1	1	1	1	1			
											The read of the	STATE OF		100 20	10000	10000							States of the

2D confocal PL map

Nanohole layout Mask implantation (20 x 20 sites)

RTA Annealing, BP 1275/50 nm

Special thanks to N. Jagtap, C. Fowley and U. Kentsch

Wafer-scale nanofabrication of single telecom quantum emitters - Broad beam Si ions

⇒ CMOS compatible fabrication method of single telecom photon emitters

Page 20

Wafer-scale nanofabrication of single telecom quantum emitters - Broad beam Si ions HBT Interferometry - Statistics

We measure the g² function of many spots to

- 1. determine the number of emitters N
- 2. calculate the creation probability

Wafer-scale nanofabrication of single telecom quantum emitters -Broad beam Si ions vs. Si FIB

Statistics histogram

⇒ Creation probability > 50%

Optical & spectral properties of single telecom emitters

⇒ Long-term stability over days of operation - No blinking, no bleaching

Optical & spectral properties of single telecom emitters

DRESDEN

concep

⇒ No spectral diffusion, spectral position of ZPL nearly equal compared to ensemble

1 Creation of G-centers using FIB in photonic integrated circuits?

Nanopillars, SILS, Cavities, waveguides,...

 \Rightarrow Locally down to single level?

⇒ On-chip control?

2 Coupling of single G-centers to a Fabry-Pérot microcavity?

PL enhancement?

Spectral stability & lifetime-limited optical linewidth?

Tuneability of ZPL emission of single G-center?

Electrical control via Stark-Effect?

Local integration & Brightness

Maximize coupling efficiency

Indistinguishability

Wafer-scale nanofabrication of single telecom quantum emitters in silicon

Member of the Helmholtz Association

14/05/2022

Wafer-scale nanofabrication of single telecom quantum emitters in silicon

Thank you for your attention!

Acknowledgement:

Y. Berencén G. V. Astakhov S. Zhou M. Helm U. Kentsch G. Hlawacek N.V. Abrosimov N. Klingner L. Bischoff N. Jagtap C. Fowley L. Rebohle D. Sobiella A. Erbe I. Skorupa

Institute of Ion Beam Physics and Materials Research

		lon implanters										
ion Beam	Low-	energy	ions / Pla	Electr								
Contor	10°	10¹	10²	10³	104	10 ⁵	10 ⁶	10 ⁷	10 ⁸	eV		
Center	High	ly-charg	ged ions	Foc	used ior	ns Ion	microp	robe				

ION BEAM ANALYSIS

- Elemental mapping and depth profiling
- Light element analysis
- Hydrogen analysis and depth profiling
- Crystal damage analysis
- In-situ process characterization
- Ion microscopy
- Long-lived radionuclides
- Analysis using reactive gases or liquids
- External proton beam

Submit a proposal at: gate.hzdr.de

ION BEAM MODIFICATION

- Ion implantation and doping
- Ion-induced ordering/disordering
- Nanostructure fabrication
- Thin-film modification
- Surface patterning
- Surface functionalization
- Ion-induced defect generation
- Nuclear and astrophysical applications
- Fabrication of standards

Ultra-high precision of processing, nm resolution, broad beams, focused ions, highly-charged ions