Experiments at Synchrotron & FEL Sources for QTech

Kai Rossnagel

Ruprecht Haensel Laboratory Kiel Nano, Surface and Interface Science KiNSIS Kiel University Deutsches Elektronen-Synchrotron DESY

Bridging DESY & CAU Kiel

Ruprecht Haensel Laboratory (RHL) / Soft X-ray Spectroscopy of Quantum Materials (SXQM)

Bridging X & Q

Versatile high-precision x-ray analytics for quantum technology hardware

X

High-precision (lowthroughput) x-ray methods

Cutting-edge science of novel, "exotic" quantum materials

> keV photons (meV resolution)

Q

Promising (solid-state) qubit platforms

"Profane" (high-throughput) characterization of technologically relevant, conventional materials

µeV energy splittings

- I. Synchrotron & free-electron-laser experiments general concepts
- II. Possible applications needs of quantum technology community?

III. 2D materials — viable quantum technology platform?

Disclaimer

It's a wide field ...

Mar.29,1976 THE Price 75 cents NEW YORKER

DESY

Soft x-rays

Photoelectron Spectroscopy

2D materials

Part I: Synchrotron & FEL experiments

General concepts

First observation of synchrotron light

April 24, 1947 — General Electric Research Laboratory, Schenectady, New York

xdb.lbl.gov/Section2/Sec_2-2.html

Tomboulian & Hartman, Phys. Rev. **102**, 1423 (1956)

Laser radiation

Laser-like x-rays?

 $1\,\mathrm{mm}^2$

 $10^{-3} = \frac{\Delta \nu}{\nu}$

Undulator radiation

Laser-like x-rays by the power of $\boldsymbol{\gamma}$

 $\gamma = 1957 E(\text{GeV})$

$$1 \,\mathrm{W} \iff 5 \cdot 10^{15} \,\lambda(\mathrm{nm}) \,\frac{\mathrm{photons}}{\mathrm{s}}$$

$$\lambda \approx \frac{\lambda_{\rm u}}{2\gamma^2} = \mathcal{O}(1\,{\rm nm})$$

$$\left(\frac{\Delta\lambda}{\lambda}\right)_{\rm cen} = \frac{1}{N} = \mathcal{O}(1\%)$$

$$\vartheta_{\rm cen} \approx \frac{1}{\gamma \sqrt{N}} = \mathcal{O}(10\,\mu{\rm rad})$$

$$\overline{P}_{
m cen} \propto rac{\gamma^2 N_{
m e}}{\lambda_{
m u}} = \mathcal{O}(1\,{
m W})$$

$$\sigma_{y,x} = \mathcal{O}(10 \cdots 100 \,\mu\mathrm{m})$$

$$\sim \approx 10^{20} \frac{\text{photons}}{\text{s}\,\text{mm}^2\,\text{mrad}^2\,0.1\%\text{BW}}$$

+ coherence + polarization

Beamlines

From source to sample: Monochromatization plus focusing

Why (soft) x-rays?

"Right" cross-section and useful spectral range

X-ray absorption spectroscopy (XAS)

Tunable x-ray energies and a picoammeter make a thin-film spectroscopy

In operando XAS

Tunable x-ray energies and two picoammeters make a device spectroscopy

X-rays

- Interface specificity
- Chemical sensitivity
- Drift & diffusion currents
- Barrier heights
- Built-in potentials

• ...

chamber

458 eV

853 eV

100 pA

Kröger et al., Appl. Phys. Lett. 120, 181601 (2022)

Energy Resolution down to 1 meV

Momentum

Resolution down to 0.005 Å⁻¹

Collective excitations

Peng et al., Nat. Phys. 13, 1201 (2017)

Quasiparticle interactions

Bostwick et al., Nat. Phys. 3, 36 (2007)

Position

Resolution down to 10 nm

Resolution down to 10 fs

Pump-probe technique

toutestquantique.fr

Polarization

Probing charge and spin anisotropies of empty valence states in core excitations

www-ssrl.slac.stanford.edu/stohr/xmcd.htm Stöhr, J. Magn. Magn. Mater. **200**, 470 (1999)

Coherence

Toward phase-sensitive spectroscopy using nanofocused & structured soft x-ray beams

Padgett et al., Physics Today 57, 5, 35 (2004)

GEFÖRDERT VOM

Photoelectron spectroscopy (ARPES)

Modern "machine shop in vacuo": ASPHERE III @ PETRA III / DESY

Soft x-ray ARPES

Electronic structure "in the bulk" & at interfaces

"Bulk" & interface sensitivity (via soft x-ray energies)

Superconductor

Semiconductor

Yu et al., Sci. Adv. 7, eabi5833 (2021)

Ünzelmann et al., Nat. Commun. 12, 3650 (2021)

In operando micro-/nano-ARPES

Electronic structure in devices under bias

Ultrafast soft x-ray ARPES

Electronic structural dynamics on fundamental time scales

High-precision multimodal x-ray nano- and femtoanalytics

A good match to solid-state qubits?

Χ

- Energy: $\Delta E \gtrsim 1 \text{ meV}$
- Momentum: $\Delta k \gtrsim 0.005 \text{ Å}^{-1}$
- Position: $\Delta x = \Delta y = \Delta z \gtrsim 10 \text{ nm}$
- Time: $\Delta t \gtrsim 10$ fs, 100 ps
- Angular momentum: spin & orbital

Part II: Possible applications

Needs of the quantum technology community?

k de Leon *et al*., Science **327**, eabb2823 (2021)

Key challenge

Understand microscopic mechanisms for noise, loss & decoherence

- Coherence time *T*₂
- Dephasing time T₂*
- Relaxation time T₁

Ladd et al., Nature 464, 45(2010)

Correlate qubit measurements with direct materials characterization

Device operation & environment

- mK temperatures
- µeV energies
- nm length scales
- µs-to-s coherence times
- ultrahigh-vacuum conditions

Revival of Surface Science? (Si \rightarrow "semiconductor vacuum")

Sources of noise

- Inhomogeneity
- Defects & impurities
- Surfaces & interfaces
- Substrates
- Strain
- Oxides
- Charges
- Spins (electronic & nuclear)
- Quasiparticles
- Phonons

Superconducting qubits

Quantum information stored in energy eigenstates of Josephson junction-based circuits

Semiconductor quantum dot qubits

Quantum information stored in spin states of confined carriers

de Leon *et al.*, Science **327**, eabb2823 (2021)

Color center qubits

Quantum information stored in electronic orbital & spin states

Topological qubits

Quantum information stored in non-Abelian topological phase of Majorana zero modes

Part III: 2D quantum materials

Viable quantum technology platform?

iopscience.iop.org/journal/0022-3727/page/ special-issue-on-quantum-materials-and-emerging-phenomena

Quantum materials

Quantum materials? All materials are quantum.

BASIC RESEARCH NEEDS WORKSHOP ON Quantum Materials for Energy Relevant Technology

Coffice of Science

... solids with **exotic** physical properties, arising from the **quantum mechanical** properties of their constituent **electrons**; such materials have great scientific and/or technological potential.

Van der Waals heterostructures

"What if we mimic layered superconductors by atomic-scale LEGO?"

clean, strain-free atomically sharp interfaces

(gate) tunable, emergent electronic properties

new kinds of devices & electronics

Geim & Grigorieva, Nature 499, 419 (2013)

2D transistors

Liu et al.,

Toward ultimate transistor scaling

DESY. | Experiments at Synchrotron and FEL Sources for QTech | Kai Rossnagel, 16 May 2022

Twistronics

Twisted bilayer WSe₂: Flat band via Moiré superlattice

Quantum simulation: Moiré quantum matter

Controllable quantum Hamiltonians realized by twisted van der Waals heterostructures

Kennes et al., Nat. Phys. 17, 155 (2021)

2D materials for quantum technology hardware

PPCQ3

Quantum computing, communication & sensing

Xmon

Resonator

Ultrasmall capacitor for superconducting qubits

Wang *et al.*, Nat. Mater. **21**, 398 (2022)

Single-photon LED

650

750

Wavelength (nm)

700

800

850

Single-photon detector

Turunen *et al.*, Nat. Rev. Phys. **4**, 219 (2022)

Walsh et al., Science 372, 409 (2021)

X meets Q

High-precision multimodal x-ray nano- & femtoanalytics for ...

Free-electron x-ray radiation from WSe₂

Electrons in — x-rays out

We welcome collaborations

Soft x-rays @ DESY/EuXFEL + TMDC crystals

kai.rossnagel@desy.de

