

ISOLPHARM_EIRA

Experiment on Interdisciplinary research on Radioactive Ag

The ISOLPHARM method

Flexible production, high specific activity & radionuclidic purity

ISOLPHARM_Ag: a case study on ¹¹¹Ag

111 Isobaric chain	t _½	Decay	Target Yield
¹¹¹ Cd	Stable		Low yield production
¹¹¹ Ag	7.45 days	β-	Good yield production
¹¹¹ Pd	23.4 min	β-	Bad release, Low prod
¹¹¹ Rh	11 sec.	β-	No release

- □ ¹¹¹Ag can be produced not only at **high purity**, but also with **high production rate:** up to 2 Ci in target after 5 days (8kW UC_x target)
- □ All Ag isotopic contaminants will be removed using the online mass separation.
- Only ¹¹¹Ag and low amounts of its stable daughter ¹¹¹Cd (mostly produced by the decay of silver) will be collected on the secondary target.

Feasibility study of ¹¹¹Ag production at ISOLPHARM

MC calculations of the 111Ag production

¹¹¹ Ag production (SPES UC _X target, 40 MeV, 200 μA)							
Time	Produced activity						
[days]	[GBq]	[Ci]					
0,5	9,46	0,26					
1	19,17	0,52					
1,5	28,48	0,77					
2	37,39	1,01					
3	54,01	1,46					
4	69,15	1,87					
5	82,95	2,24					

For such calculations a dedicated IT infrastructure was designed in CloudVeneto

TARGETING

AGENT

Stable Ag deposition tests

First radiopharmaceutical prototype

Radiolabeling with ⁶⁸Ga at Reggio Emilia Hospital

Proposal of a CSN5 experiment

Goal: First in-vitro and in-vivo test of a ¹¹¹Ag based radiopharmaceutical produced by INFN

Task 1: Physics

- Simulation and study of ¹¹¹Ag production via the ¹¹⁰Pd(n, γ)¹¹¹Pd \rightarrow ¹¹¹Ag reaction.
- Quality control of the production of ¹¹¹Ag through spectroscopy analysis
- Laser ionization of Ag

Task 2: Radiochemistry

- Development of a library of novel chelators for silver and copper and characterization of their properties.
- Small molecules and linker development
- Radiolabeling of the synthetized compounds prior with ⁶⁴Cu and then with ¹¹¹Ag, characterization of their properties (stability, etc.)

Task 3: Biology

- In vitro activities: study of affinity and internalization using florescence (eventual studies with ⁶⁴Cu and ¹¹¹Ag)
- Development of 3D scaffold and cell cultures for studies in dynamic conditions
- In vivo tests using florescence
- In vivo imaging using ⁶⁴Cu and ¹¹¹Ag radiolabelled compounds

Project schedule

										tuto Nazionale di Fisica Nu				
		Year 1		Year 2 M15 M18 M21 M24				Year 3				Notes		
	Total Objects	M3	M6	M9	M12	M15	M18	M21	M24	M27	M30	M33	M36	Required for
	Task 1 - Physics													
MS1.1	Design and production of ¹¹⁰ Pd based targets	\rightarrow			•									MS1.2
MS1.2	Irradiation of ¹¹⁰ Pd target and extraction of ¹¹¹ Ag at LENA					\rightarrow	0				•			MS2.10
MS1.3	Design and offline test of proper ionizing radiation detectors	\rightarrow			•									MS1.4
MS1.4	Spectroscopic analyses of irradiated targets for quality controls and yield measurements at LENA					\rightarrow	0				•			
MS1.5	Porting of MC codes in CloudVeneto	\rightarrow			•						_			MS1.6
MS1.6	MC code development and simulations in CloudVeneto for 111 Ag production estimation and dose evaluation	\rightarrow			0		•							MS1.3
MS1.7	Laser ionization of Ag							\rightarrow					•	
	Task 2 - Radiochemistry													
MS2.1	Development of purification methods for Ag from Pd and recovery of Pd	\rightarrow			0		•							MS1.2
MS2.2	Development of a more efficient purification methods for Ag from Cd							\rightarrow					•	
MS2.3	Development and characterization of a first library of chelators for Ag and Cu (DOTETE and analogues)	\rightarrow		•										MS2.4
MS2.4	Radiolabeling and stability studies for the first library of chelators				\rightarrow				•					
MS2.5	Development and characterization of a second library of optimized chelators for Ag and Cu					\rightarrow		0			•			MS2.6
MS2.6	Radiolabeling and stability studies for the second library of chelators								\rightarrow				•	
MS2.7	Synthesis and radiolabeling Z360 targeting vectors and analogues (1 st gen.)	\rightarrow	0		•									MS3.2
MS2.8	Synthesis and characterization of fluorescent targeting vectors (2 nd gen.)			\rightarrow	0		0		•					MS3.3, MS3.5
	Synthesis of optimized targeting vectors for ⁶⁴ Cu and ¹¹¹ Ag (3 rd gen.)							\rightarrow	0		•			MS2.10
MS2.10	Radiolabeling with ⁶⁴ Cu and ¹¹¹ Ag and characterization of the optimized targeting vectors (3 rd gen.)									\rightarrow			•	MS3.7, MS3.8
	Task 3 - Biology													
MS3.1	Selection of a cell line for CCK2R+ and characterization	\rightarrow	0		•									MS3.2
MS3.2	<i>In-vitro</i> and <i>in-vivo</i> study of DOTA-Z360 targeting vectors analogues (1 st gen.)			\rightarrow			•							
MS3.3	In-vitro studies of targeting vectors with flourescent targeting agents (2 nd gen.)					\rightarrow	0		•					MS3.6
MS3.4	Design of suitable 3D scaffold for in vitro tissue mimicking	\rightarrow					•							MS3.5
MS3.5	<i>In-vitro</i> uptake studies (3D scaffolds) with fluorescent compounds (2 nd gen.)							\rightarrow			•			
MS3.6	Biodistribition studies, pharmacokinetics and <i>in-vivo</i> imaging with fluorescent compounds (2 nd gen.)							\rightarrow			0		•	MS3.8
MS3.7	<i>In-vitro</i> studies of optimized targeting vectors rediolabelled with 64 Cu and 111 Ag (3^{rd} gen.)									\rightarrow	0		•	MS3.8
MS3.8	Biodistribition studies, pharmacokinetics and <i>in-vivo</i> imaging with ⁶⁴ Cu and ¹¹¹ Ag radiolabelled compounds (3 rd gen.)											\rightarrow	•	

\rightarrow	Activity started
0	Preliminary results required to start other subsequent activities
•	Milestone reached

¹¹⁰Pd irradiation at LENA - 3 days

 111 Pd $t_{1/2}$ = 23.4 min 111 Ag $t_{1/2}$ = 7.45 day

Economic request for ISOLPHARM-EIRA

	Year 1	Year 2	Year 3
	[€]	[€]	[€]
	INFN-LNL		
Inventoriables	1500	6000	
Consumables	16000	14400	12200
Travels	8000	8000	8000
TOTAL INFN-LNL	25500	28400	20200
	INFN-PD		
Inventoriables	14500		
Consumables	500	500	500
Travels	5500	6500	7000
TOTAL INFN-PD	20500	7000	7500
	INFN-PV		
Inventoriables	2000	3000	1000
Consumables	1000	8000	8000
Travels	5000	5000	5000
TOTAL INFN-PV	8000	16000	14000
	INFN-TIFP	A	
Inventoriables	0	0	0
Consumables	7160	1900	7900
Travels	2000	2000	2000
TOTAL INFN-TIFPA	9160	3900	9900
	INFN-LNS		
Inventoriables	0	0	0
Consumables			6700
Travels	2000	2000	5000
TOTAL INFN-LNS	2000	2000	11700
TOTAL PROJECT	65160	57300	63300

		Year 1	Year 2	Year 3
		[€]	[€]	[€]
	INFN-PV			
	Set-up for the analysis of irradiated samples		1000	1000
Inventoriables	Set-up for a radiochemistry hood at LENA	2000	2000	
	TOTAL	2000	3000	1000
	Irradiations of 110Pd targets at LENA		5000	5000
Consumables	Consumables for the radiochemistry laboratory at LENA	1000	2000	2000
Consumables	Transport of irradiated samples		1000	1000
	TOTAL	1000	8000	8000
Travels	Travels for meetings	5000	5000	5000
	TOTAL INFN-PV	8000	16000	14000

Personnel involved

Name	Expertise – Activity in the project	Task	FTE			
Alberto Andrighetto (National resp.)	Project coordination	1,2,3	0.5			
Stefano Corradetti (LNL local resp.)	Local coordination and Ag release-ionization tests	2	0.5			
Michele Ballan	MC codes and simulations, Ag ionization	1,2	0.5			
Marianna Tosato	Purification and chelators development	2	1			
Marco Verona	Synthesis and characterization of ligands	2,3	1			
Michele Caeran	<i>In-vitro</i> studies	3	1			
Giovanni Marzaro	Synthesis and characterization of ligands	2	1			
Valerio Di Marco	Purification and chelators development	2	1			
Francesca Mastrotto	<i>In-vitro</i> studies	3	1			
Mattia Asti	<i>In-vitro</i> and <i>in-vivo</i> studies	3	1			
	Total LNL FTE					

PD						
Name	Task	FTE				
Marcello Lunardon (PD local resp.)	1	0.2				
Sandra Moretto	1	0.1				
Cristiano Fontana	1	0.2				
Luca Stevanato	1	0.2				
Paolo Lotti	1	0.3				
Lisa Zangrando	1	0.2				
Total PD FTE	1.2					

PV		
Name	Task	FTE
Aldo Zenoni (PV local resp.)	1	0.6
Antonietta Donzella	1	0.5
Andrea Salvini	1	0.3
Lucilla Strada	1	0.3
Massimo Oddone	1	0.2
Barbara Smilgis	1	0.2
Michele Prata	1	0.2
Total PV FTE		2.3

LINS		
Name	Task	FTE
Giorgio Russo (LNS local resp.)	3	0.2
Francesco P Cammarata	3	0.5
Rosalba Parenti	3	0.5
Massimo Gulisano	3	0.2

Total TIFPA FTE

Total LNS FTE

TIFPA

Task

3

2

Name

Antonella Motta Alberto Quaranta

Alessandra Bisio

Devid Maniglio (TIFPA local resp.)

Personnel:

31 researchers involved in the project. Total 16.2 INFN - FTE

1.4

FTE

0.3

0.5

2.8

ISOLPHARM_EIRA overview

The path of ISOLPHARM_EIRA

MC cloud calculations of yields and doses

Cancer

cell

UNIVERSITÀ

DEGLI STUDI DI PADOVA

Production of ¹¹¹Ag in nuclear reactor

Azienda Unità Sanitaria Locale di Reggio Emilia IRCCS Istituto in tecnologie avanzate e modelli assistenziali in oncologia

Linkers development

Trento Institute for and Applications

Cell line for CCK2R development and in-vitro and in-vivo testing

