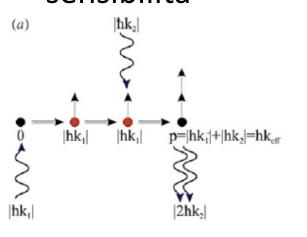
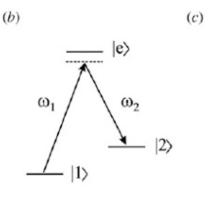
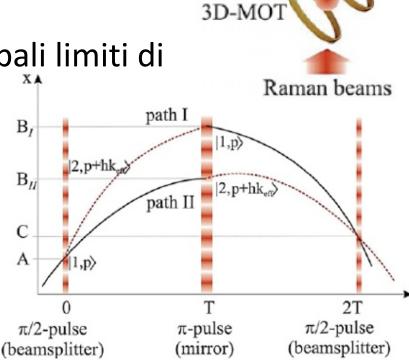
OLAGS Optical Links for Atomic Gravity Sensors


nuova sigla CSN5 già proposta per la call CSN5 2018 (FLAGS)


Coord. Naz. F. Sorrentino

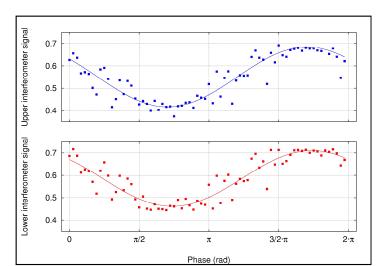

Gravimetri atomci

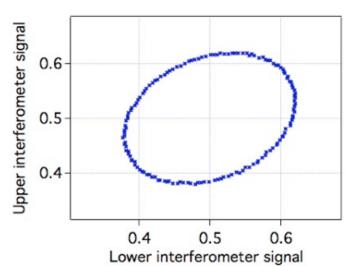
- Sono basati sull'interferometria atomica: laser cooling + manipolazione coerente di pacchetti d'onda atomici
- Sono i migliori gravimetri assoluti: dimostrate sensibilità dell'ordine di 10 μ gal/ ν Hz, accuratezza ν 1 μ gal (1 μ gal= 10^{-8} m/s²)

 Il rumore sismico è uno dei principali limiti di sensibilità

Magnetic

Detection


Atom

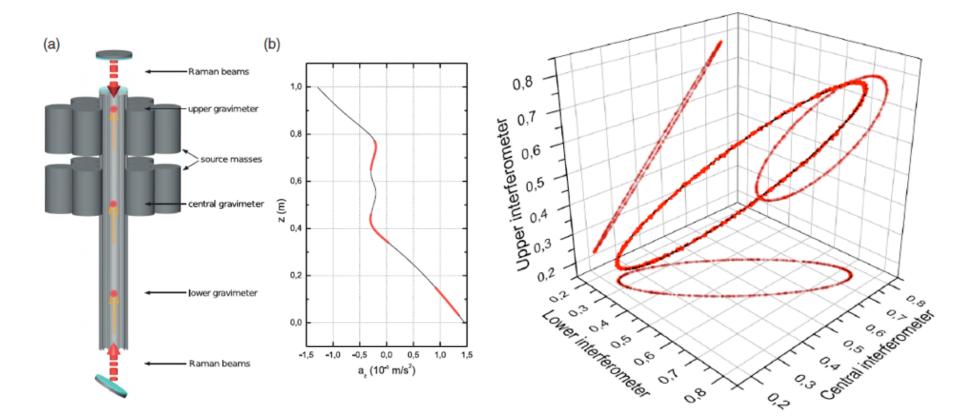

fountain

shield

Gradiometri gravitazionali

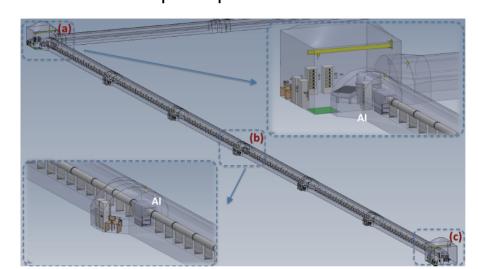
- Due campioni atomici separati verticalmente
- Interrogazione con lo stesso campo laser per la manipolazione del pacchetto d'onda atomico
- Dimostrato un CMRR migliore di 140 dB per rumore sismico
- Sensibilità differenziale dimostrata di 5·10⁻¹¹ g @10000 s con baseline di 30 cm
 - [F. Sorrentino et al., Phys. Rev. A 89, 023607 (2014)]
- L'uso di due nuvole atomiche migliora anche la misura di g
 - F. Sorrentino et al., Appl. Phys. Lett. 101, 114104 (2012)

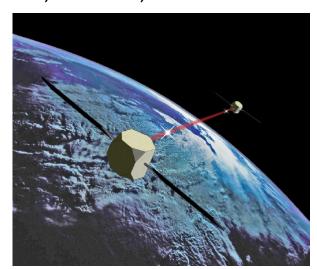
Atoms

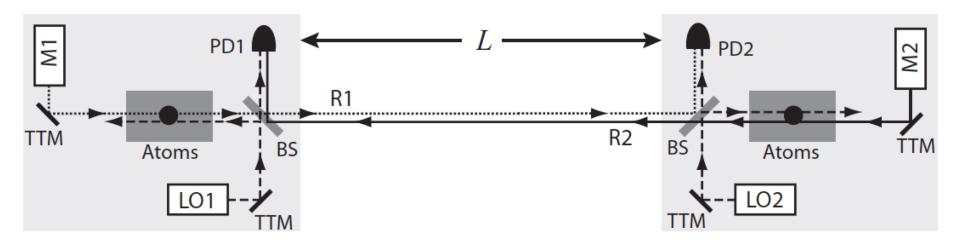

Atoms

Detection

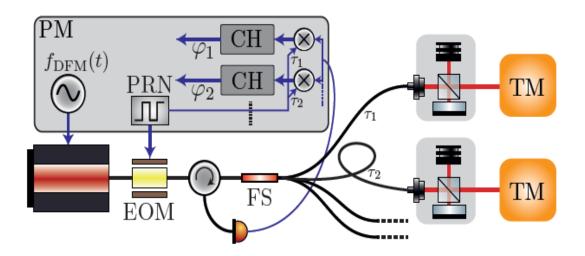
Raman beams


Scalabilità dei gradiometri


- Con n+1 campioni atomici equispaziati si misura la derivata spaziale n-sima del campo gravitazionale
- Dimostrato ad es. per la misura della curvatura del campo gravitazionale
 - F. Sorrentino et al., Appl. Phys. Lett. 101, 114104 (2012)


Scalabilità dei gradiometri

- Con n+1 campioni atomici equispaziati si misura la derivata spaziale n-sima del campo gravitazionale
- Dimostrato ad es. per la misura della curvatura del campo gravitazionale
 - F. Sorrentino et al., Appl. Phys. Lett. 101, 114104 (2012)
- La sensibilità nella misura di gradiente dipende dalla distanza tra i sensori
 - Misure ultra-sensibili richiedono apparati di grandi dimensioni
 - Fontane verticali da ~10 m (Stanford, Hannover, Firenze)
 - Cavità ottica orizzontale da 300 m, (LNBB, Francia, progetto MIGA)
 - Proposte per link laser tra satelliti distanti: AGIS, AGIS-LEO, SAGE



- Dimostrare la possibilità di misurare il gradiente gravitazionale con due sensori atomici distanti
- Utilizzare lo stesso campo laser per interrogare i due gravimetri, mediante un link ottico coerente
 - Link in vuoto
 - CMRR elevato su grandi distanze (~km)
 - controllo di fronti d'onda laser
 - Link in eterodina [J. M. Hogan and M. A. Kasevich, Atom interferometric gravitational wave detection using heterodyne laser links, Phys. Rev. A 94, 033632 (2016)]

- Dimostrare la possibilità di misurare il gradiente gravitazionale con due sensori atomici distanti
- Utilizzare lo stesso campo laser per interrogare i due gravimetri, mediante un link ottico coerente
 - Link in vuoto
 - Link in fibra ottica
 - Metodi di metrologia ottica per la cancellazione del rumore di fase indotto dalla fibra tramite link a due vie
 - Metodi interferometrici per trasferimento di un riferimento inerziale ad una massa di test [O. Gerberding, Opt. Expr. 14753, 234267 (2015)]

- Dimostrare la possibilità di misurare il gradiente gravitazionale con due sensori atomici distanti
- Utilizzare lo stesso campo laser per interrogare i due gravimetri, mediante un link ottico coerente
 - Link in vuoto
 - Link in fibra ottica
 - Metodi di metrologia ottica per la cancellazione del rumore di fase indotto dalla fibra tramite link a due vie
 - Metodi interferometrici per trasferimento di un riferimento inerziale ad una massa di test [O. Gerberding, Opt. Expr. 14753, 234267 (2015)]
- Studiare la scalabilità della rete per:
 - numero di sensori
 - distanza tra i sensori
 - dimensioni (e sensibilità) del singolo sensore

- Dimostrare la possibilità di misurare il gradiente gravitazionale con due sensori atomici distanti
- Utilizzare lo stesso campo laser per interrogare i due gravimetri, mediante un link ottico coerente
 - Link in vuoto
 - Link in fibra ottica
 - Metodi di metrologia ottica per la cancellazione del rumore di fase indotto dalla fibra tramite link a due vie
 - Metodi interferometrici per trasferimento di un riferimento inerziale ad una massa di test [O. Gerberding, Opt. Expr. 14753, 234267 (2015)]
- Studiare la scalabilità della rete per:
 - numero di sensori
 - distanza tra i sensori
 - dimensioni (e sensibilità) del singolo sensore
- Studiare le configurazioni ottimali per specifici campi applicativi
 - Topologia della rete
 - trade-off costo/prestazioni

Ambiti applicativi

- Fisica terrestre e dell'ambiente
 - Fisica della terra solida
 - Fisica della terra fluida
- Rivelazione di onde gravitazionali
 - Misura del rumore Newtoniano in bassa frequenza per rivelatori di 3° generazione
 - Misura di fondo stocastico tramite modi normali della terra
- Fisica fondamentale
 - Ricerca di Dark Matter
 - Dark energy

Il gruppo proponente

- Genova (1 FTE)
 - coord. Naz., link in fibra ottica, controllo di fronti d'onda laser, controllo dei campi magnetici, modelli per misure di rumore Newtoniano
- Firenze (~1.6 FTE t.b.c.)
 - Interferometria atomica su riga di orologio ottico, metodi di ottica atomica, integrazione di link ottici e isolamento sismico su sistemi atomici
- Pisa (1 FTE t.b.c.)
 - isolamento sismico, controllo angolare, modelli per misure di rumore Newtoniano, modelli per ottica atomica con atomi intrappolati
- Roma 3 (0.2 FTE t.b.c.)
 - modelli per misure di fisica della terra e dell'atmosfera
- LNF (0.4 FTE)
 - sistema da vuoto, elettronica di controllo

Struttura della proposta

- Tecnologie per i link ottici (GE + FI + Pi)
 - Sviluppo del link ottico in fibra; studio della topologia ottimale; test del principio su scala di lunghezze variabile; integrazione con sensori atomici
 - Metodi di controllo per fronti d'onda laser; nella propagazione libera su grandi distanze
- Tecnologie di ottica atomica (FI + PI + EGO)
 - Interferometro atomico su riga di orologio ottico; beam-splitters atomici ad alto momento trasferito;
 Interferometria con atomi intrappolati
 - Integrazione di sistemi per isolamento sismico e controllo di fronti d'onda
- Isolamento sismico (PI)
 - Sistema per la riduzione del rumore di accelerazione verticale sul singolo IA
 - Controllo dell'assetto angolare e del rumore di puntamento per i fasci laser utilizzati come beam splitter per il pacchetto d'onda atomico
- Altri sviluppi tecnologici (LNF + GE)
 - Sistema da vuoto per l'I.A.
 - Sistema di controllo dei campi magnetici
 - Elettronica di controllo della rete
- Modelli per misura di osservabili fisiche in ambiente terrestre (RM3 + PI+ GE)
 - Fisica terrestre: analisi di serie temporali per caratterizzazione delle componenti di rumore, modelli per misure di osservabili geofisiche
 - Onge gravitazionali: metodi di analisi del segnale per la misura del rumore newtoniano e per rivelazione di OG sub-Hz attraverso i modi normali terrestri