A novel LN₂ fill level meter

D.Lersch, B. Birkenbach, B. Bruyneel, J. Eberth, H. Hess, G. Pascovici, P. Reiter, H.G.Thomas*, A. Wiens

IKP-Cologne, *CTT

January 20th - 2010

Motivation

AGATA detectors are operated at $90 \, \mathrm{K}$ and $p \approx 10^{-7} \, \mathrm{mbar}$

- When detector gets warm: getter starts gasing out and HV-sparks may damage electronics in the cold part → long downtimes
- Temperature-monitoring via PT100-sensor: detector system reacts slow on changes of temperature in cold part
- Leakage current-monitoring:
 Detector is not operational anymore
- ullet Direct monitoring of the LN_2 -level

The capacitive LN₂-level-monitor

- Each AGATA-dewar is equipped with a further (inner) cylinder in the interior → cylindrical capacitor
- ullet Capacity is measured as function of the LN_2 -filling-level

The capacitive LN₂-level-monitor

The capacity C as function of the LN_2 -filling-level h of a cylindrical capacitor with radius r_1 and r_2 :

$$C(h) = C_1 + C_2 = 2\pi\epsilon_0 \cdot \ln\left(\frac{r_2}{r_1}\right)^{-1} \cdot \left(h_0 + 0.4h\right)$$

The capacitive LN₂-level-monitor

- ullet Measurements show linear dependency between capacity and $\mathrm{LN}_2\text{-filling-level}$
- Filling-capacity is also a linear function of time
- Difference ΔC between empty and full dewar:

$$\Delta C = C_{max} - C_{min} = 1054 \,\mathrm{pF} - 924 \,\mathrm{pF} \approx 12 \,\%$$

LN_2 -consumption-Measurements

- \bullet Another advantage of capacitive $LN_2\mbox{-read-out:}$ information about $LN_2\mbox{-consumption}$
- Consumption influenced by configuration of the cold part (e.g. cabling, electronics, applied low voltage)

LV	$ u \left[rac{\mathrm{ml}}{\mathrm{h}} \right]$	$ au[ext{h}]$
ON	419 ± 19	11 ± 0.5
OFF	378 ± 23	12 ± 0.7

The C/V-transducer

- C/V-transducer: does not measure whole range of 1000 pF, but difference $C_m-C_r \rightarrow$ sensitive to $\Delta C \sim 12 \%$
- The filling capacity C_m is translated into a DC-voltage signal $V(G,O,C_m)=m(G)\cdot C_m+V_0(G,O)$ with adjustable gain G and offset O

The C/V-transducer

Principle

- Capacitor is charged / discharged by constant current → triangular wave signal
- Reference oscillator drives phase-locked and clock-synchronized two identical integrators with capacities C_r and C_m
- Difference signal $C_m C_r$ is filtered and amplified \rightarrow DC-voltage

The C/V-transducer

Adjusting and calibrating

- ullet Last AGATA-week: prototype of LN_2 -read-out was successfully tested at ATC(4)
- 4 further devices @ Cologne and tested at ATC(4) ($C_{min}=924\,\mathrm{pF}$, $C_{max}=1054\,\mathrm{pF}$, $\Delta\,C=130\,\mathrm{pF}$)

- Adjustment of output-voltage with gain- and offset-potentiometer
- Output-voltage of each device defined: $V_{min}(C_{min}) = 5 \, \text{V}$, $V_{max}(C_{max}) = 10 \, \text{V}$
- $\Delta C = 130 \, \mathrm{pF} \rightarrow \Delta U = 5 \, \mathrm{V}$

Position-dependent measurements

- Different detector positions in array
- Influence of inclination θ on LN_2 -read-out
- Geometrical shape of liquid nitrogen inside dewar
- Parameterisation: Surface $S(\theta)$ covered with liquid nitrogen is proportional to filling-capacity $C: S(\theta) \propto C$

Geometrical shapes of LN_2 inside the dewar

Position dependent measurements

Calculations and results

Summary and outlook

- The capacitive LN₂-read-out is working
 - C is a function of filling height h
 - ightharpoonup Difference between full and empty dewar: $\Delta C \sim 12\,\%$
- Implementation of the C/V-transcenducer
- Position dependent measurements of the filling capacity
 - Inclination have an influence on the filling capacity
 - Common operation time
 - Define common treshold
- Integration of C/V-transducer in AGATA-patchpanel and the cryogenic filling system

