A novel LN₂ fill level meter D.Lersch, B. Birkenbach, B. Bruyneel, J. Eberth, H. Hess, G. Pascovici, P. Reiter, H.G.Thomas*, A. Wiens IKP-Cologne, *CTT January 20th - 2010 ### Motivation AGATA detectors are operated at $90 \, \mathrm{K}$ and $p \approx 10^{-7} \, \mathrm{mbar}$ - When detector gets warm: getter starts gasing out and HV-sparks may damage electronics in the cold part → long downtimes - Temperature-monitoring via PT100-sensor: detector system reacts slow on changes of temperature in cold part - Leakage current-monitoring: Detector is not operational anymore - ullet Direct monitoring of the LN_2 -level ### The capacitive LN₂-level-monitor - Each AGATA-dewar is equipped with a further (inner) cylinder in the interior → cylindrical capacitor - ullet Capacity is measured as function of the LN_2 -filling-level ### The capacitive LN₂-level-monitor The capacity C as function of the LN_2 -filling-level h of a cylindrical capacitor with radius r_1 and r_2 : $$C(h) = C_1 + C_2 = 2\pi\epsilon_0 \cdot \ln\left(\frac{r_2}{r_1}\right)^{-1} \cdot \left(h_0 + 0.4h\right)$$ ### The capacitive LN₂-level-monitor - ullet Measurements show linear dependency between capacity and $\mathrm{LN}_2\text{-filling-level}$ - Filling-capacity is also a linear function of time - Difference ΔC between empty and full dewar: $$\Delta C = C_{max} - C_{min} = 1054 \,\mathrm{pF} - 924 \,\mathrm{pF} \approx 12 \,\%$$ ### LN_2 -consumption-Measurements - \bullet Another advantage of capacitive $LN_2\mbox{-read-out:}$ information about $LN_2\mbox{-consumption}$ - Consumption influenced by configuration of the cold part (e.g. cabling, electronics, applied low voltage) | LV | $ u \left[rac{\mathrm{ml}}{\mathrm{h}} \right]$ | $ au[ext{h}]$ | |-----|---|----------------| | ON | 419 ± 19 | 11 ± 0.5 | | OFF | 378 ± 23 | 12 ± 0.7 | ## The C/V-transducer - C/V-transducer: does not measure whole range of 1000 pF, but difference $C_m-C_r \rightarrow$ sensitive to $\Delta C \sim 12 \%$ - The filling capacity C_m is translated into a DC-voltage signal $V(G,O,C_m)=m(G)\cdot C_m+V_0(G,O)$ with adjustable gain G and offset O # The C/V-transducer ### Principle - Capacitor is charged / discharged by constant current → triangular wave signal - Reference oscillator drives phase-locked and clock-synchronized two identical integrators with capacities C_r and C_m - Difference signal $C_m C_r$ is filtered and amplified \rightarrow DC-voltage ### The C/V-transducer #### Adjusting and calibrating - ullet Last AGATA-week: prototype of LN_2 -read-out was successfully tested at ATC(4) - 4 further devices @ Cologne and tested at ATC(4) ($C_{min}=924\,\mathrm{pF}$, $C_{max}=1054\,\mathrm{pF}$, $\Delta\,C=130\,\mathrm{pF}$) - Adjustment of output-voltage with gain- and offset-potentiometer - Output-voltage of each device defined: $V_{min}(C_{min}) = 5 \, \text{V}$, $V_{max}(C_{max}) = 10 \, \text{V}$ - $\Delta C = 130 \, \mathrm{pF} \rightarrow \Delta U = 5 \, \mathrm{V}$ ### Position-dependent measurements - Different detector positions in array - Influence of inclination θ on LN_2 -read-out - Geometrical shape of liquid nitrogen inside dewar - Parameterisation: Surface $S(\theta)$ covered with liquid nitrogen is proportional to filling-capacity $C: S(\theta) \propto C$ # Geometrical shapes of LN_2 inside the dewar ### Position dependent measurements #### Calculations and results ### Summary and outlook - The capacitive LN₂-read-out is working - C is a function of filling height h - ightharpoonup Difference between full and empty dewar: $\Delta C \sim 12\,\%$ - Implementation of the C/V-transcenducer - Position dependent measurements of the filling capacity - Inclination have an influence on the filling capacity - Common operation time - Define common treshold - Integration of C/V-transducer in AGATA-patchpanel and the cryogenic filling system