Introduction	Detector Tests	Coupling with AGATA Demonstrator	Conclusion 00	Appendix

TRACE telescopes: the coupling with the AD at LNL

D. Mengoni

University of the West of Scotland, Paisley - U.K. INFN - Sezione di Padova, Padova - Italy

AGATA Week, LNL Jan $20^{th} \div 22^{th}$, 2010

Introduction	Detector Tests	Coupling with AGATA Demonstrator	Conclusion	Appendix
Outline				

= 900

Introduction

TRACE Principle

Detector Tests

Si-Pad detectors & Digital Electronics

3 Coupling with AGATA Demonstrator

- Commissioning Run
- Experimental Campaign

Conclusion

Introduction ●000	Detector Tests	Coupling with AGATA Demonstrator	Conclusion	Appendix

Introduction Direct reaction (Transfer,Coulex, ...) as spectroscopic tool

- Positions of levels (Q-value)
- Spin and parities (Angular distributions)
- Spectroscopic factor (Cross sections)

Transfer with RIBs

- Inverse kinematics
- Low intensity beams
- Detection: beam-like ejectile (spectrometer), target-like ejectile (Si det.)

Problems

Energy (angular resolution)

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

- Efficiency
- Background
- target, beam tracker

1				
Introduction	Detector Tests	Coupling with AGATA Demonstrator	Conclusion	Appendix

Introduction FE as spectroscopic tool

- Channel Selection
- Doppler Correction

	FE with Intense beam
	Direct kinematics
	High intensity beams
	Detection: light charged particles
-	
-	Problems
-	Problems Angular resolution
	 Problems Angular resolution Particel discrim. Efficiency
	 Problems Angular resolution Particel discrim. Efficiency Chilled target

・ロト ・聞 ト ・ヨト ・ヨト

Ð.

Detector Tests

Coupling with AGATA Demonstrator

Conclusion

Appendix

TRACE Design TRacking Array for light Charged particle Ejectiles

TRACE4,6,8

(日)

▶ simul

UWS , INT

500

- Δ E-E telescope array: 150 μ m and 1.5mm;
- PSA&ToF, ~1E4 ch, 1÷2° 4x4 mm² at 10 cm;
- TRACE design: barrel, end-caps.

Introduction Detector Tests Coupling with AGATA Demonstrator Conclusion Apper

Ancillary impact Experimental proof of principle

• Silicon center, PSA on Ge detector

Full information on the DSSSD, PSA on Ge detector

AGATA cluster + ancillary

Introduction	Detector Tests	Coupling with AGATA Demonstrator	Conclusion	Appendix
0000	0000	000000	00	

Tests on ITC-IRST detectors 300 μm,1 mm, 1.5 mm thickness, 1x1, 2x2, 4x4 mm², low resistivity, AC coupling.

Introduction 0000	Detector Tests	Coupling with AGATA Demonstrator	Conclusion 00	Appendix
PAD sens	sor			

1÷1.5 mm thick detector with small dead layer

Detector Tests

Coupling with AGATA Demonstrator

Conclusion

Appendix

Digital electronics

Detector&Pre

- TRACE, EUCLIDES
- Mesytec, Cologne, Mi, Pd

Preamplifier

- Noise Charac. (FFT)
- Energy Resolution
- Segmentation

PSA

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Detector Tests

Coupling with AGATA Demonstrator

Conclusion

Appendix

Trace OFF-LINE DAQ

- sync: self accomplished (1 card), ext built trigger (multiple cards)
- distributed processes

 Introduction
 Detector Tests
 Coupling with AGATA Demonstrator
 Conclusion
 Appendix

 TRACE first in-beam experiment

 1⁷O(350 MeV)+²⁰⁸Pb

 2x120ch (high density con.), 2.5° ang res, 2x12.5° ang range.

TRACE telescope

Introduction 0000	Detector Tests	Coupling with AGATA Demonstrator	Conclusion 00	Appendix
FEE&DAG	2			
Electronics cou	pling			

・ロト・4回ト・4回ト・4回ト・目・99()

Detector Tests

Coupling with AGATA Demonstrator

Conclusio

Appendix

Cooling system

- Ceramic PCB
- 2 Peltier cell(2x18W)
- water chiller(300 W,18 bar)

Thermal noise generation

< ロ > < 同 > < 回 > < 回 >

Coupling with AGATA Demonstrator

Conclusio

Appendix

Results Mass&Energy resolution

Isotopic separation: O,N,C, etc
Si Energy resolution ~0.45%

Detector Tests

Coupling with AGATA Demonstrator

Conclusion

Appendix

AD exp campaign TRACE set-up for light ions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Detector Tests

Coupling with AGATA Demonstrator

Conclusior

Appendix

Trace ON-LINE DAQ

UWS INFR

troduction De

Detector Tests

Coupling with AGATA Demonstrator

Conclusion

Appendix

UWS m

Perspectives

AGATA

Synergies

GASPARD (SPIRAL2-GANIL)

< ロ > < 同 > < 回 > < 回 >

HYDE (FAIR-GSI)

Detector Tests Coupling with AGATA Demonstrator

Conclusion

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Appendix

Sac

Summary and conclusions

- TRACE telescopes are working;
- Coupling with AD achieved;
- Distributed OFF-LINE DAQ.

ON GOING

- GQR ²⁰⁸Pb, ⁹⁰Zr: TRACE+AD+HELENA;
- ON-LINE distributed DAQ;
- PSA on light ions and particles.
- Development of new 1.5 mm thick detector;

 Detector Tests
 Coupling with AGATA Demonstrator
 Conclusion
 Appendix

 00
 00000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</t

Simulation: framework

Event generator, radiation interaction, filter (PSA, tracking), data collection (matrices and spectra)

UWS 🔎

◆□▶▲□▼▲□▼▲□▼ □ ● ●

 Introduction
 Detector Tests
 Coupling with AGATA Demonstrator
 Conclusion
 Appendix

 Simulation:
 framework

Simulation: framework other configuration

- Full-energy eff.:probability to detect the total energy of any emitted photon individually
- Peak-to-total ratio: the ratio of full energy efficiency to the total interaction efficiency.

Intro	duction	۱.
000	0	

Detector Tests

Coupling with AGATA Demonstrator

Conclusion

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Appendix

Multiple hit probability and efficiency TRACE8

Multiple hit event: more than one particle hits simultaneously the same segment

Probability P(M,k) to detect k particles over M emitted

Assumed isotropic fusion-evaporation (M=6), 1000 pads with 8x8 mm² dim.

 $P(M, 0) + P(M, 1) \simeq 99\%$

Efficiency: broadening of the measured fold

$$\frac{P(M,k)}{P(M,k-1)} \Longrightarrow \varepsilon_{\alpha} = 40\%, \ \varepsilon_{p} = 50\%$$

for ³²S(125 MeV) +⁴⁰ Ca, $\gamma_{2^{+} \rightarrow 0^{+}}$ ⁶⁴Ge(2 α), $\gamma_{2^{+} \rightarrow 0^{+}}$ ⁷⁰Se(2 p)

ction Detector Tests Coupling with AGATA Demonstrator Conclusion

Doppler correction

Doppler broadening

- uncertainty in the photon emission angle
- uncertainty in the recoil energy
- intrinsic detector resolution

Appendix

Intro	duct	ion
000	0	

Detector Tests

Coupling with AGATA Demonstrator

・ロン・1日と・1日と

Appendix

Ancillary comparison

TRACEX, EUCLIDES				
	TRACE4	TRACE6	TRACE8	EUCLIDES
Telesc	40	52	48	40
Crys shap (E)	3	5	4	3
Channels($E\Delta E$)	2856÷183E3	2435÷156E3	2304÷148E3	110
Rate (kHz)	1÷80	1÷80	1÷80	200
Chan selec	EΔE	EΔE	EΔE	ΕΔΕ
Abs.ph.eff. (%)	26.6	26.84	27.82	26.0
P/T (%)	58.49	59.57	59.26	58.46
FWHM (keV)	-	-	2.5÷5.5	7÷8
Solid angle (%)	90	<90	<90	\sim 80(exp)
Eff (%)	55,42(sim)	52,38(sim)	53,40(sim)	50,40(exp)
Mass (E Δ E, g)	705.5	601.6	569	107.4
Vol (E Δ E, cm ³)	302.8	258.2	244.3	46.1

Ξ.

Introduction	Detector Tests	Coupling with AGATA Demonstrator	Conclusion	Appendix
Conclus	sion			

Telescope specifications

- Detector: Silicon.
- Geometry & dimensions: solid angle coverage ≈ 90%; counting rate: 20 kHz; module dimensions ≃ 40 x 80 mm²; ΔE: Si-pad det. ≃ 150 µm thick, pad 4x4 mm²; E: Si-pad det. 1.5 mm thick, pad 4x4 mm².
- Angular resolution: $1 \div 2^{\circ} 4x4 \text{ mm}^2$ at 10 cm.
- Energy resolution: <50 keV for 5.5 MeV α -particles.
- Wide energy range: 200 keV \div 15 MeV for p, 60 MeV for α -particles.
- Pulse shape analysis

• □ > • □ > • □ > • □ > • □ >

Coupling with AGATA Demonstrator

Collecting electrodes

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Appendix

Introduction	Detector Tests	Coupling with AGATA Demonstrator	Conclu
0000	0000	000000	00

Neighbour electrodes

