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Outline:

I Lifetime measurements with radioactive beams

I Simulation details

I Comparison with data

I Some examples

I Future improvements
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Lifetime Measurements with Exotic Beams

1 2vv

dtarget degrader

EnergyEE 12

Doppler shift method for lifetime measurements
(Plunger Method)

I Important tool for nuclear structure investigation

I Model independent lifetimes

I Many future experiments will use this technique

PRESPEC plunger experiments

I Fast beams: v/c several 10%

I Thick target and degrader

I Broad beams: FWHM are several cm in x- and y -direction

I Low event rate (compared to stable beam facilities)
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Changes to the existing Simulation System

[C. Domingo Pardo]
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Changes to the existing Simulation System

[C. Domingo Pardo]

Simulation of plunger experiments requires a di�erent Primary Event Generator

Current version of the Plunger Primary Event Generator

I New code

I Fits into the existing framework

I Supports an arbitrary number of separated target layers
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Simulation Details

x ∆τ ∆τ
1 2∆

point of excitation points of decay

For every primary
I Choose reaction point

I Integrate Bethe-Bloch formula (in space)

I Reaction kinematics and ejectile excitation

Repeat until complete de-excitation

I Integrate Bethe-Bloch formula (in proper time of ejectile)

I Compute Lorentz boosted isotropic emission probability

I Emit gamma (write input �le for AGATA code)

Bethe-Bloch Formula
At high energy: reasonable approximation
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Example Input
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Comparison with NSCL Plunger Simulation
110Pd Coulomb excitation

Energy (keV)
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from [P. Adrich et al., Nucl. Instr. and Meth. A 598 (2009) 454]

I 65.8 MeV/u 110Pd beam

I 108µm thick 93Nb target

I 503µm thick 12C degrader

I τ
2+
1

= 67.1ps

I E
2+
1

= 373.8keV

I Coulomb excitation in target and degrader

S2 Geometry
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Di�erent Distances and Doppler Correction
110Pd Coulomb excitation
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Plunger Data Analysis
Example with 2 Degrader Foils

Di�erent kinds of plunger data analysis
I Di�erential Decay Curve (DDC) Method

I τ dependant line shape or simulation → �t τ

I Target with 2 degrader foils (Di�erential Plunger)
[Dewald et al, Z. Phys. A 334 163 (1989)]

Example setup

I 65.8 MeV 110Pd beam, Coulomb excitation

I 108µm thick 93Nb target

I 800µm thick 12C degrader

I 400µm thick 12C second degrader

I d1 = 2.0mm , d2 = 3.0mm

I τ
2+
1

= 67.1ps

I E
2+
1

= 373.8keV
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Outlook and Remarks on Geant4

Outlook

I Implement particle straggling

I Add more types of reactions

I Consider using Geant4

Geant4 is a framework for Monte-Carlo particle tracking

I Handles properly any geometry, tracking and production of secondarys

I Interesting for nuclear physics simulations: Geant4 version 9.3 has ICRU'73
based stopping model for ions with 0.025MeV/u < T < 1GeV/u

I No model for nuclear excitation processes (Coulomb excitation, fusion,
transfer)

I Geant4 gets interesting with increasing number simulation details
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Summary

I Implementation and test of new event generator for PRESPEC plunger
simulations

I Possibilities of the software

I Further development (Geant4)

Thank you for your attention!
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