Simulations of PRESPEC Plunger experiments J. Gerl, O. Möller, C. Domingo Pardo, N. Pietralla, M. Reese

TECHNISCHE UNIVERSITÄT DARMSTADT

Outline:

- Lifetime measurements with radioactive beams
- Simulation details
- Comparison with data
- Some examples
- Future improvements

Lifetime Measurements with Exotic Beams

January 20, 2010 | Institut für Kernphysik, TU Darmstadt | Michael Reese | 2

Lifetime Measurements with Exotic Beams

Lifetime Measurements with Exotic Beams

Changes to the existing Simulation System

[C. Domingo Pardo]

Changes to the existing Simulation System

[C. Domingo Pardo]

Simulation of plunger experiments requires a different Primary Event Generator

Changes to the existing Simulation System

[C. Domingo Pardo]

Simulation of plunger experiments requires a different Primary Event Generator

Current version of the Plunger Primary Event Generator

- ▶ New code
- Fits into the existing framework
- Supports an arbitrary number of separated target layers

January 20, 2010 | Institut für Kernphysik, TU Darmstadt | Michael Reese | 5

For every primary

- Choose reaction point
- Integrate Bethe-Bloch formula (in space)
- Reaction kinematics and ejectile excitation

For every primary

- Choose reaction point
- Integrate Bethe-Bloch formula (in space)
- Reaction kinematics and ejectile excitation

- Integrate Bethe-Bloch formula (in proper time of ejectile)
- Compute Lorentz boosted isotropic emission probability
- Emit gamma (write input file for AGATA code)

Bethe-Bloch Formula

At high energy: reasonable approximation

$$\frac{\mathrm{d}E}{\mathrm{d}x}(\beta) \sim n \, Z_p^2$$

For every primary

- Choose reaction point
- Integrate Bethe-Bloch formula (in space)
- Reaction kinematics and ejectile excitation

- Integrate Bethe-Bloch formula (in proper time of ejectile)
- Compute Lorentz boosted isotropic emission probability
- Emit gamma (write input file for AGATA code)

Bethe-Bloch Formula

At high energy: reasonable approximation

 $\frac{\mathrm{d}E}{\mathrm{d}x}(\beta) \sim n \, Z_p^2$

Propagate in space

d β	d <i>E</i>	$d\beta$	_ d <i>E</i>	$\left(1-\beta^2\right)^{3/2}$
dx	dx	dE	dx	βm_p

For every primary

- Choose reaction point
- Integrate Bethe-Bloch formula (in space)
- Reaction kinematics and ejectile excitation

- Integrate Bethe-Bloch formula (in proper time of ejectile)
- Compute Lorentz boosted isotropic emission probability
- Emit gamma (write input file for AGATA code)

Bethe-Bloch Formula

At high energy: reasonable approximation

$$\frac{\mathrm{d}E}{\mathrm{d}x}(\beta) \sim n \, Z_p^2$$

Propagate in space

d β	d <i>E</i>	$d\beta$	_ d <i>E</i>	$\left(1-\beta^2\right)^{3/2}$
dx	dx	dE	dx	βm_p

Propagate in proper time of projectile

$$\frac{\mathrm{d}\beta}{\mathrm{d}\tau} = \frac{\mathrm{d}E}{\mathrm{d}x} \frac{\mathrm{d}\beta}{\mathrm{d}E} \frac{\mathrm{d}x}{\mathrm{d}\tau}$$
$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = \gamma\beta c$$

For every primary

- Choose reaction point
- Integrate Bethe-Bloch formula (in space)
- Reaction kinematics and ejectile excitation

- Integrate Bethe-Bloch formula (in proper time of ejectile)
- Compute Lorentz boosted isotropic emission probability
- Emit gamma (write input file for AGATA code)

Example Input

# all length in micometers								
# Laver: A Z density(in g/cm^3) thickness(in um) cross section								
# A = 7 = 1 and density = 0 means vacuum								
w x = 2 = 1 and denotey = 6 means vacadim								
1								
Layer: 93 41 8.57 108.0 80.0 C # target								
Layer: 1 1 0 2000.0 0.0 C # vacuum								
Layer: 12 6 1.85 803.0 0.0 C # degrader 1								
Layer: 1 1 0 3000.0 0.0 C # vacuum								
Laver: 12 6 1.85 400.0 0.0 C # degrader 2								
Ap: 110 # projectile mass								
Ap. 110 # projectite mass								
zp: 46 # projectite charge number								
EO: 80.0 # initial projectile energy (in MeV/A)								
deltaE: 1.0 # variance of initial projectile energy (in MeV/A)								
Ae: 110 # ejectile mass								
e: 46 # ejectile charge number								
Ze. 40 # ejectite charge humber								
Bh: 8.0 # binding energy in MeV/u								
decay_filename: decay								
x0: 0.0 # primary beam position								
deltax: 30000 # and variance in x-direction (in um)								
v0:00 # primary beam position								
delteur 20000 - # and wanienes in y direction (in um)								
dectay: 30000 # and variance in y-direction (in um)								

January 20, 2010 | Institut für Kernphysik, TU Darmstadt | Michael Reese | 6

Comparison with NSCL Plunger Simulation ¹¹⁰Pd **Coulomb excitation**

January 20, 2010 | Institut für Kernphysik, TU Darmstadt | Michael Reese | 7

Different Distances and Doppler Correction ¹¹⁰Pd **Coulomb excitation**

Plunger Data Analysis Example with 2 Degrader Foils

Different kinds of plunger data analysis

- Differential Decay Curve (DDC) Method
- \blacktriangleright au dependant line shape or simulation ightarrow fit au
- Target with 2 degrader foils (Differential Plunger) [Dewald et al, Z. Phys. A 334 163 (1989)]

Plunger Data Analysis Example with 2 Degrader Foils

Different kinds of plunger data analysis

- Differential Decay Curve (DDC) Method
- \blacktriangleright au dependant line shape or simulation ightarrow fit au
- Target with 2 degrader foils (Differential Plunger) [Dewald et al, Z. Phys. A 334 163 (1989)]

Example setup

- ▶ 65.8 MeV ¹¹⁰Pd beam, Coulomb excitation
- 108 μ m thick ⁹³Nb target
- ▶ 800 μ m thick ${}^{12}C$ degrader
- 400 μ m thick ¹²C second degrader
- $d_1 = 2.0$ mm , $d_2 = 3.0$ mm

•
$$\tau_{2_1^+} = 67.1 \text{ps}$$

•
$$E_{2_1^+} = 373.8 \text{keV}$$

Plunger Data Analysis Example with 2 Degrader Foils

Different kinds of plunger data analysis

- Differential Decay Curve (DDC) Method
- $\blacktriangleright \ \tau$ dependant line shape or simulation \rightarrow fit τ
- Target with 2 degrader foils (Differential Plunger) [Dewald et al, Z. Phys. A 334 163 (1989)]

Example setup

- ▶ 65.8 MeV ¹¹⁰Pd beam, Coulomb excitation
- 108µm thick ⁹³Nb target
- ▶ 800µm thick ¹²C degrader
- 400 μ m thick ¹²C second degrader
- $d_1 = 2.0$ mm , $d_2 = 3.0$ mm

•
$$\tau_{2_1^+} = 67.1 \text{ps}$$

•
$$E_{2_1^+} = 373.8 \text{keV}$$

Outlook and Remarks on Geant4

Outlook

- Implement particle straggling
- Add more types of reactions
- Consider using Geant4

Outlook and Remarks on Geant4

Outlook

- Implement particle straggling
- Add more types of reactions
- Consider using Geant4

Geant4 is a framework for Monte-Carlo particle tracking

- ► Handles properly any geometry, tracking and production of secondarys
- ▶ Interesting for nuclear physics simulations: Geant4 version 9.3 has ICRU'73 based stopping model for ions with 0.025 MeV/u < T < 1 GeV/u

Outlook and Remarks on Geant4

Outlook

- Implement particle straggling
- Add more types of reactions
- Consider using Geant4

Geant4 is a framework for Monte-Carlo particle tracking

- Handles properly any geometry, tracking and production of secondarys
- Interesting for nuclear physics simulations: Geant4 version 9.3 has ICRU'73 based stopping model for ions with 0.025 MeV/u < T < 1 GeV/u
- No model for nuclear excitation processes (Coulomb excitation, fusion, transfer)
- Geant4 gets interesting with increasing number simulation details

Summary

- Implementation and test of new event generator for PRESPEC plunger simulations
- Possibilities of the software
- Further development (Geant4)

Summary

- Implementation and test of new event generator for PRESPEC plunger simulations
- Possibilities of the software
- Further development (Geant4)

Thank you for your attention!