Backward EMC for $B \rightarrow \tau \nu_{\tau}$ **Decay**

A. Chivukula, <u>A. Rakitin</u> Caltech

> November 24, 2009 DGWG Meeting

http://www.hep.caltech.edu/~arakitin/tex/2009.Nov.24.DGWG/talk.pdf

Decays of recoil **B** with large branching

<u> </u>		0	
	$B ightarrow au^+ u_ au$ and then	BF(au) from PDG	
1-prong	$\tau^+ \to e^+ \nu_e \overline{\nu_\tau}$	17.85%	
	$\tau^+ \to \mu^+ \nu_\mu \overline{\nu_\tau}$	17.36%	
	$\tau^+ \to \pi^+ \overline{\nu_\tau}$	10.91%	
	$\tau^+ \to \pi^+ \pi^0 \overline{\nu_\tau}$	25.51%	
	$\tau^+ \to \pi^+ \pi^0 \pi^0 \overline{\nu_\tau}$	9.29%	
	Total 1-prong	80.92%	
rong	$\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu_\tau}$	9.32%	
З <mark>-</mark> р	$\tau^+ \to \pi^+ \pi^- \pi^+ \pi^0 \overline{\nu_\tau}$	4.61%	
	Total 3-prong	13.93%	
	Grand total	94.85%	

- These decays cover almost all au width
- In our analysis presented last time we've covered first three lines (BF = 46.12%)
- Now we are concentrating mostly on the fourth line
- A. Chivukula, A. Rakitin (Caltech), DGWG, Nov 24, 2009

Goals

- $<\!\!\! < \!\!\! > \!\!\! > \!\!\!$ Separate from background indirect decays $B \rightarrow {\rm stuff}, {\rm stuff} \rightarrow \rho + X_{miss}$
- Separate from background decays $B \to \pi^0 + \text{random track} + X_{miss}$ (both direct and indirect)

Once good ρ 's from τ 's are isolated:

- Obtain E_{extra}^{corr} by subtracting the corresponding photons from E_{extra}
- Plot sig and bkg yields vs. cut on E_{extra}^{corr} and compare the $S/\sqrt{S+B}$ curves for regular SuperB and SuperB-no-Bwd-EMC architectures

Possible direct ρ backgrounds

Decay	BF	BF ratio
Signal $B^+ \to \tau^+ \nu_{\tau}, \tau^+ \to \rho^+ \overline{\nu_{\tau}}, \rho^+ \to \pi^+ \pi^0$	$(3.6 \pm 0.1) \times 10^{-5}$	1.00
$B^+ \to \overline{D^0} \rho^+$	$(1.34 \pm 0.18)\%$	372
$B^+ \to \overline{D^{*0}}\rho^+$	$(9.8 \pm 1.7) \times 10^{-3}$	272
$B^+ \rightarrow$ other charm + ρ^+	$< \mathcal{O}(10^{-3})$	$\mathcal{O}(0\text{-}10^2)$
$B^+ \to J/\psi \rho^+$	$(5.0 \pm 0.8) imes 10^{-5}$	1.39
$B^+ o K^0 ho^+$	$(8.0 \pm 1.5) \times 10^{-6}$	0.22
$B^+ \to K^{*0}(892)\rho^+$	$(9.2 \pm 1.5) \times 10^{-6}$	0.26
$B^+ \to \rho^+ \gamma$	$(8.8^{+2.9}_{-2.5}) imes 10^{-7}$	0.02
$B^+ \to \pi^0 \rho^+$	$(1.09 \pm 0.14) \times 10^{-5}$	0.30
$B^+ \to ho^0 ho^+$	$(1.8 \pm 0.4) imes 10^{-5}$	0.50
$B^+ \to \omega \rho^+$	$(1.06^{+0.26}_{-0.23}) imes 10^{-5}$	0.29
$B^+ \to \eta' \rho^+$	$(8.7^{+3.9}_{-3.1}) imes 10^{-6}$	0.24
$B^+ \to \phi \rho^+$	$< 1.6 \times 10^{-5}$	< 0.44
$B^0 \to \rho + X_{miss}$	negligible for had. tag	small

Generated bkg MC sample: RhoAnything $\pmb{0}$

π^0 and ho mass

 E_{extra}

S/B ratios

Cut on E_{extra}^{corr}

- Cut on E_{extra}^{corr} increases S/B ratio compared to cut on E_{extra}
- In terms of bwd EMC presence, S/B ratio is about 40%-50% better with it

Cut on E_{extra}

• $S/\sqrt{S+B}$ ratio is about 10% better with bwd EMC

TM & @ Nelvana

Possible indirect ρ backgrounds

	Decay	BF	BF ratio
	Signal $B^+ o au^+ u_ au, au^+ o ho^+ \overline{ u_ au}, ho^+ o \pi^+ \pi^0$	$(3.6 \pm 0.1) \times 10^{-5}$	1.00
emileptonic	$B^{+} \rightarrow D^{(*(*))0} \ell \nu_{\ell}, D^{(*(*))0} \rightarrow \rho^{+} + X$ $B^{+} \rightarrow D^{(*)-} \pi^{+} \ell \nu_{\ell}, D^{(*)-} \not\rightarrow \rho^{+} + X$ $B^{+} \rightarrow \text{ pop charm } \models \ell \nu_{\ell} \text{ pop charm } \rho \Rightarrow \rho^{+} + X$	2.1% 0.0	583 0.0
adronic s	$D \rightarrow \text{Hom-charm} + \ell \nu_{\ell}, \text{Hom-charm} \rightarrow \rho + \Lambda$	0.0	0.0
h d	$B^+ \rightarrow$ hadrons, hadrons $\rightarrow \rho^- + X$	(()	large?
	$B^0 \rightarrow \text{stuff}, \text{stuff} \rightarrow \rho^- + X$	negligible for had. tag	small

Needed bkg MC samples:

- $B^- \rightarrow \text{charm} + \ell^- + \nu_\ell$, charm $\rightarrow \rho^- + X$ (CharmRhoLepNu @) done
- $B^- \rightarrow \text{hadrons}, \text{hadrons} \rightarrow \rho^- + X \text{ (HadRho } \mathbf{0} \text{)} \text{to be done}$

π^0 and ho mass

S/B ratio

Cut on E_{extra}^{corr}

- Again, cut on E_{extra}^{corr} increases S/B ratio compared to cut on E_{extra}
- In terms of bwd EMC presence, S/B ratio is about 10% better with it

Cut on E_{extra}

• $S/\sqrt{S+B}$ ratio is about 2%-3% better with bwd EMC

TM & @ Nelvana

Hadronic indirect ρ backgrounds

Will be done later

Needed bkg MC sample:

- $B^- \rightarrow \text{charm} + X_1, \text{charm} \rightarrow \rho^- + X_2$ (CharmRho 4)
- $B^- \rightarrow \text{non-charm} + X_1, \text{non-charm} \rightarrow \rho^- + X_2$ (NonCharmRho Θ)

Possible π^0 backgrounds

Decay	BF	BF ratio
Signal $B^+ \to \tau^+ \nu_{\tau}, \tau^+ \to \rho^+ \overline{\nu_{\tau}}, \rho^+ \to \pi^+ \pi^0$	$(3.6 \pm 0.1) \times 10^{-5}$	1.00
$B^+ o \pi^0 \ell^+ u_\ell$ (nothing is lost)	$7.7 imes10^{-5}$	2.16
$B^+ \to D^{(*(*))0} \ell^+ \nu_{\ell}, D^{(*(*))0} \to \pi^0 + X$	a few %	large
$B^+ \to D^{(*)-} \pi^+ \ell^+ \nu_\ell, D^{(*)-} \to \pi^0 + X$	a few %	large
$B^+ \to \eta \ell^+ \nu_\ell, \eta \to 3\pi^0 + X$		$\mathcal{O}(1)$
$B^+ \to \eta' \ell^+ \nu_\ell, \eta' \to \pi^0 + X$	$\sim 2 imes 10^{-5}$	$\mathcal{O}(1)$
$B^+ o \omega \ell^+ u_\ell, \omega o \pi^0 + X$	$1.3 imes 10^{-4}$	3.54
$B^+ \to \pi^0 + X_{miss}$???	large?
$B^+ \rightarrow hadrons, hadrons \rightarrow \pi^0 + X_{miss}$???	large?

Any π^0 from this table, being combined with a random track, may give a good ρ candidate which will be counted as coming from τ (provided that other tracks and photons are lost) Needed bkg MC samples:

- $B^- \rightarrow \pi^0 \ell^- \nu$ (Pi0LepNu **()** done
- $B^- \to X_1 + \ell^- + \nu, X_1 \to \pi^0 + X_2$ (StuffPi0LepNu O) to be done
- $B^- \rightarrow \pi^0 + \text{hadrons}$ (Pi0Had $m{0}$) to be done
- $B^- \rightarrow \text{hadrons}, \text{hadrons} \rightarrow \pi^0 + X \text{ (HadPi0 } \textbf{9} \text{)} \text{to be done}$

π^0 and ho mass

 E_{extra}

S/B ratio

Cut on E_{extra}^{corr}

- Again, cut on E_{extra}^{corr} increases S/B ratio compared to cut on E_{extra}
- In terms of bwd EMC presence, S/B ratio is about 20% better with it •

• $S/\sqrt{S+B}$ ratio is about 2%-3% better with bwd EMC

TM & @ Nelvana

Conclusion

- We developed cuts for separating signal and background π^0 's and ρ 's are
- We generated 4 bkg MC samples (5 to go)
- $\bullet\,$ In these 4 samples we saw that bwd EMC improves S/B ratio by 10%-50%
- $S/\sqrt{S+B}$ ratio improved by 2%-10%, depending on the decay generated