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Quenching and saturation in
scintillators

It is known since many years that when the ionization
rate in scintillator is much higher than a m.i.p. the
yield of scintillation light is not proportional to the
energy loss.

dE/dx = K z3(1/beta?)In(...)

The m.i.p. loss is present when 7=1_and beta~1,




Birks law In scintillators

The light yield at the first order is proportional
to the energy loss

dL/dx = a dE/dx

The quenching in light production is described with an
approximate formula known as Birks law:




Low beta (low momentum)

Experimental data have been collected in nuclear physics
accelerators (LLNS) at low beta, few MeV/nucleon.
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Measurement of kI3 at low momentum

Some values measured at low momentum for EJ 299 are
k ~ 0.5 mg/MeV/cm®.

For a m.i.p. the dE/dx ~2x10*” MeV/mg/cm*.
When beta®~ 10° — beta*'~ 30 (a few MeV for light ions).

The light yeld is suppressed by a factor of 2.




Quenching for ions

The other source of high ionization are ions (z>>1) even at
high energy (beta~1).

According to Birks’ law the quenching is the same when

72 ~ beta=.

Energy loss mechanisms for slow (beta <<1) particles

are different from high energy ions (beta~1 high z):

- delta-rays production

- Landau fluctuations.




Results for ions
Experimental results of quenching with high energy ions

are limited. DAMPE PSD provides important data.

Light collected in the 1 cm thick PSD with the ion flux
from cosmic rays with the natural cosmic ray abundance.

Corrections for position dependance and equalizations are
applied.
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Results for ions

Charge measurement of cosmic ray nuclei with the plastic scintillator detector of DAMPE - Adobe Reader
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Quenching correction for ions

Birks empirical formula is not adequate.
DAMPE uses a polynomial formula.
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Analitical study
For understanding the behaviour of scintillator plate
crossed by the flux of cosmic ray ions the analytical
calculation of energy loss in 1 cm plate is performed.

Ion abundance is taken from literature.

Energy loss follows
- Landau

- Gauss

- Vavilov

Goal: what limits charge measurement resolution?




Energy loss in HERD PSD

Energy loss distribution, all chemical species and sum.
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Energy loss in HERD PSD

Energy loss distribution, all chemical species and sum.

EnergylLoss
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Energy loss in HERD PSD (charge

al?a}éixg;?pﬁcies and sum.
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Energy loss in HERD PSD (charge
Charge distribution, aﬁgl!ileilxﬁlzﬁ ré‘&ecies and sum.
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Conclusions

Efforts to calculate analitically the response of PSD
cosmic ray ion flux.

Comparison with DAMPE.

Quenching effect to be included.

Understanding limitation on ion charge measurement.

Testing different geometrical configuration.

Full GEANT4 sinulation to follow.
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