Herd italian meeting Rome 1st July 2019 Pavia group

Study on quenching effect in scintillator for PSD

Quenching and saturation in scintillators

It is known since many years that when the ionization rate in scintillator is much higher than a m.i.p. the yield of scintillation light is not proportional to the energy loss.

dE/dx = K z²(1/beta²)ln(...)

The m.i.p. loss is present when z=1 and beta~1. Much higher ionization density is achieved for low beta (e.g. low momentum proton) or high z (ions).

Birks law in scintillators

- <u>The light yield at the first order is proportional</u> <u>to the energy loss</u>
- dL/dx = a dE/dx
- The quenching in light production is described with an approximate formula known as Birks law: $dL/dx = a dE/dx /(1 + k_B dE/dx)$ For large dE/dx the linearity is lost, eventually dL/dx saturates.

Low beta (low momentum) Experimental data have been collected in nuclear physics accelerators (LNS) at low beta, few MeV/nucleon.

Measurement of k_B at low momentum

- Some values measured at low momentum for EJ 299 are <u> $k_{\rm B} \sim 0.5 \text{ mg/MeV/cm}^2$ </u>.
- For a m.i.p. the dE/dx ~ $2x10^{-3}$ MeV/mg/cm².
- <u>When beta⁻² ~ 10³ \rightarrow beta⁻¹ ~ 30 (a few MeV for light ions).</u>
- The light yeld is suppressed by a factor of 2.

Quenching for ions

- The other source of high ionization are ions (z>>1) even at high energy (beta~1).
- According to Birks' law the quenching is the same when $\underline{z^2} \sim \underline{beta^{-2}}$.
- Not obvious to be verified!
- <u>Energy loss mechanisms for slow (beta <<1) particles</u> <u>are different from high energy ions (beta~1 high z):</u>
- delta-rays production
- Landau fluctuations.

Results for ions

Experimental results of quenching with high energy ions are limited. DAMPE PSD provides important data.

Light collected in the 1 cm thick PSD with the ion flux from cosmic rays with the natural cosmic ray abundance.

Corrections for position dependance and equalizations are applied.

Results for ions

On the abscissa the equivalent ion charge proportional(by definition) the th energy loss

Quenching correction for ions Birks empirical formula is not adequate.

Analitical study

For understanding the behaviour of scintillator plate crossed by the flux of cosmic ray ions the analytical calculation of energy loss in 1 cm plate is performed.

Ion abundance is taken from literature.

- **Energy loss follows**
- <u>- Landau</u>
- Gauss
- Vavilov

Goal: what limits charge measurement resolution?

Energy loss in HERD PSD

Energy loss distribution, all chemical species and sum.

EnergyLoss

Energy loss in HERD PSD <u>Energy loss distribution, all chemical species and sum.</u>

EnergyLoss

Energy loss in HERD PSD (charge equivalent) Charge distribution, all chemical species and sum.

ChargeLoss

Energy loss in HERD PSD (charge equivalent) Charge distribution, all chemical species and sum.

ChargeLoss

Conclusions

Efforts to calculate analitically the response of PSD cosmic ray ion flux.

Comparison with DAMPE.

Quenching effect to be included.

Understanding limitation on ion charge measurement.

Testing different geometrical configuration.

Full GEANT4 sinulation to follow.