BEACH 2010 The IX International Conference on Hyperons, Charm, and Beauty Hadrons

ERUGIA, Italy

#### HADRONIC B DECAYS AT BELLE

KAI-FENG CHEN NATIONAL TAIWAN UNIVERSITY

## OUTLINE



- Introduction & Motivation
- Inclusive  $B \rightarrow X_s \eta$
- $B \rightarrow VV: \rho^{\circ}K^{*\circ} \& K^{*\circ}K^{*\circ}$
- Summary

## INTRODUCTION & MOTIVATION

- The charmless hadronic *B* decays provide rich final states: <u>an excellent tool to probe the SM</u>.
- Dominated by b→s(d) penguin diagrams &
   b→u tree amplitudes:
  - Loop processes are ideal places to look for new physics / new particles.
  - Interference between those penguin & tree amplitudes is one of the key element to *CP* (and phase) analyses.
- The global picture of experimental data helps developing theoretical models or tools such as QCDF/pQCD/SCET approaches.



 $b \rightarrow u tree$ 

#### THE KEKB FACTORY

↑ Mt. Tsukuba

🗸 Tsukuba Experimental Hall

✓ KEKB Storage Ring

 $e+e-linac \rightarrow$ 

Dorm & Restaurant →

4



#### THE BELLE DETECTOR



## INCLUSIVE $B \rightarrow X_s \eta^{(\prime)}$

- $B \rightarrow X_s \eta^{(\prime)}$  decay proceeds with  $b \rightarrow s$ penguin process: provide the sensitivity for New Physics beyond the SM.
- Involving η/η': probing the interference effects between the underlying pseudo-scalar octet and singlet components.
- The picture for exclusive modes are relatively well understood, but less clear for the inclusive (*X<sub>s</sub>*) decays.



## LEARNED FROM $X_s\eta$

Nor

OCD anomaly?

7

 $\hat{\mathbf{B}}^0$ 

- Key features:
  #1: Unexpected large branching fractions.
  #2: Large X<sub>s</sub> mass.
- Possible explanations:
  - QCD anomaly mechanism couples two gluons to the singlet η' ?
  - Intrinsic charm component of the η' ?
  - Large contributions from non-perturbative charming penguin ?



PRL 93, 061801 (2004)

Measuring  $B \rightarrow X_s \eta$  decay may help to clarify the picture!

## EVENT RECONSTRUCTION

- A semi-inclusive method is introduced in the reconstruction:  $B^{+} \rightarrow K^{+}(\pi^{0})\eta \qquad B^{0} \rightarrow K^{0}_{S}(\pi^{0})\eta \\B^{+} \rightarrow K^{0}_{S}\pi^{+}(\pi^{0})\eta \qquad B^{0} \rightarrow K^{+}\pi^{-}(\pi^{0})\eta \\B^{+} \rightarrow K^{+}\pi^{+}\pi^{-}(\pi^{0})\eta \qquad B^{0} \rightarrow K^{0}_{S}\pi^{+}\pi^{-}(\pi^{0})\eta \\B^{+} \rightarrow K^{0}_{S}\pi^{+}\pi^{-}\pi^{+}(\pi^{0})\eta \qquad B^{0} \rightarrow K^{+}\pi^{-}\pi^{+}\pi^{-}(\pi^{0})\eta \\B^{+} \rightarrow K^{+}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\eta \qquad B^{0} \rightarrow K^{0}_{S}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\eta \\With \eta \rightarrow \gamma \gamma$  (18 channels in total).
- Charm (D<sup>o</sup>, D<sup>+</sup>, η<sub>c</sub>) / η' veto is applied - further reduce the contributions from other B decays.



## $X_s\eta$ SIGNAL YIELDS



Signal yields are extracted by fitting the  $M_{bc}$  in bins of  $M(X_s)$ .

## X<sub>s</sub>η BRANCHING FRACTIONS



Partial BF in 0.4< $M(X_s)$ <2.6 GeV/ $c^2$ :  $\mathcal{B}(B \to X_s \eta) = (25.5 \pm 2.7 \pm 1.6^{+3.8}_{-14.1}) \times 10^{-5}$ 

 $\eta/\eta'$  channels:

"large  $\eta' gg$  coupling"

hypothesis is disfavored.

## $B \rightarrow VV$ : INTRODUCTION

11

- A typical *B*→*VV* decay has three possible helicity states.
- Many measurable parameters in a single decay: BF/CP/Polarization
   useful for theoretical studies.
- The naive SM prediction:
   Polarization should be dominated by the longitudinal component:

 $f_L \propto 1 - \mathcal{O}(\frac{M_V}{M_B})^2 \approx 95\%$ 

However, it's not the case in experimental data!

Simply require angular momentum conservation spin 1 V0 +1-1 spin o B +10 spin 1 Longitudin: Z

## $B \rightarrow VV$ : THE $f_L$ PUZZLE



#### RECENT BELLE *VV* RESULT: $B \rightarrow \rho^{\circ} K^{* \circ}$

- Dominated by  $b \rightarrow s$  penguin amplitude.
- Reconstruction with  $\rho^{\circ} \rightarrow \pi^{+}\pi^{-}$  &  $K^{*\circ} \rightarrow K^{+}\pi^{-}$ : the final state is shared by more then one decay channels:
- Use  $\Delta E$  and  $M_{bc}$  to identify *B* mesons; consider  $M(\pi^+\pi^-)$  and  $M(K^+\pi^-)$  to distinguish different channels.
- Reject D\*±X/D±X/D°X events actively.



#### RECENT BELLE *VV* RESULT: $B \rightarrow \rho^{\circ} K^{* \circ}$



### RECENT BELLE *VV* RESULT: $B \rightarrow \rho^{\circ} K^{* \circ}$

| Mode                              | Yields                                 | Sig.( $\sigma$ ) | BF (10 <sup>-6</sup> )          | U.L. (10 <sup>-6</sup> ) |                       |
|-----------------------------------|----------------------------------------|------------------|---------------------------------|--------------------------|-----------------------|
| $ ho^{\mathrm{o}}K^{*\mathrm{o}}$ | 77.6 +28.6                             | 2.7              | 2.1 +0.8 +0.9<br>-0.7 -0.5      | <3.4                     | Not seen!?            |
| $f_0(980)K^{*0}$                  | 51.2 <sup>+20.4</sup> <sub>-19.3</sub> | 2.5              | 1.4 +0.6 +0.6<br>-0.5 -0.4      | <2.2                     |                       |
| $ ho^{\mathrm{o}K^{+}\pi^{-}}$    | 207.8 +39.8 -39.2                      | 5.0              | $2.8 \pm 0.5 \pm 0.5$           | -                        | First<br>Observation! |
| $f_0(980)K^+\pi^-$                | 106.9 +31.6 -29.9                      | 3.5              | $1.4 \pm 0.4 + 0.3 + 0.3 + 0.4$ | <2.1                     |                       |
| $\pi^+\pi^-K^{*o}$                | 200.7 +46.7 -44.9                      | 4.5              | 4.5 +1.1 +0.9                   | -                        |                       |
| $\pi^+\pi^-K^+\pi^-$              | -5.4 +54.9                             | 0.0              | -0.1 +1.2 +1.4<br>-1.1 -0.8     | <2.1                     |                       |

- Only partial phase spaces are covered for the non-resonant decays:
   0.55 < M(ππ) <1.2 GeV and 0.75 < M(Kπ) <1.2 GeV</li>
- $f_L(\rho^{\circ}K^{*\circ})$  is assumed to be 0.5 for the central value, 0 or 1 are used in systematic uncertainty estimation.

#### RECENT BELLE *VV* RESULT: $B \rightarrow K^{*0} \overline{K}^{*0}$



- Dominated by  $b \rightarrow d$  penguin amplitude.
- A similar issue for  $B \rightarrow K^{*0} \overline{K}^{*0} \rightarrow KK\pi\pi$  : we need to include two  $M(K\pi)$  in the fitting in order to distinguish different decay channels.

#### RECENT BELLE *VV* RESULT: $B \rightarrow K^{*0} \overline{K}^{*0}$



#### RECENT BELLE *VV* RESULT: $B \rightarrow K^{*0} \overline{K}^{*0}$

| Mode                                     | Yields                                                                                    | Sig.( $\sigma$ ) | BF (10 <sup>-6</sup> )                                  | U.L.(10 <sup>-6</sup> ) |                                            |
|------------------------------------------|-------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|-------------------------|--------------------------------------------|
| $K^{*o}\overline{K}^{*o}$                | $7.7 \begin{array}{c} +9.7 \\ -8.5 \end{array} \begin{array}{c} +2.8 \\ -2.2 \end{array}$ | 0.9              | 0.26 +0.33 +0.10<br>-0.29 -0.08                         | <0.8                    | Not seen!                                  |
| $K^{*\mathrm{o}}\overline{K}^{-}\pi^{+}$ | $18 \begin{array}{c} +48 \\ -45 \end{array} \begin{array}{c} +42 \\ -41 \end{array}$      | 0.3              | $2.1 \begin{array}{r} +5.6 \\ -5.3 \\ -4.8 \end{array}$ | <14                     |                                            |
| K*0 (1430) K*0 (1430)                    | 79 +71 +56<br>-70 -57                                                                     | 0.8              | $3.2 \pm 2.9 \pm 2.3$                                   | <8.3                    |                                            |
| K*0 (1430) <del>K</del> *0               | $20 \pm 31 + 40 - 43$                                                                     | 0.4              | $0.7 \pm 1.1 \stackrel{+1.4}{_{-1.5}}$                  | <3.3                    |                                            |
| K*0 (1430)K <sup>-</sup> π <sup>+</sup>  | -223 <sup>+172</sup> <sup>+160</sup><br>-171 -169                                         | -                | -                                                       | <32                     | -                                          |
| $K^+\pi^-K^-\pi^+$                       | 158 +121 +104<br>-118 -105                                                                | 1.0              | 29 ±22 ±19                                              | <72                     | Large centra<br>value with<br>large error. |

• Only partial phase spaces are covered: 0.7 GeV <  $M(K\pi)$  <1.7 GeV.

•  $f_L(K^{*o}\overline{K}^{*o})$  is assumed to be 1.0 in the efficiency estimation.

#### RECENT BELLE *VV* RESULT: $B \rightarrow K^{*0}K^{*0}$

• Look for forbidden decays – a "wrong" charge combination:  $B \rightarrow K^{*0}K^{*0} \rightarrow K^{+}\pi^{-}K^{+}\pi^{-}$ .



| Mode                    | Yields                                                 | Sig.( $\sigma$ ) | BF (10 <sup>-6</sup> )                     | U.L.(10 <sup>-6</sup> ) |
|-------------------------|--------------------------------------------------------|------------------|--------------------------------------------|-------------------------|
| <i>K</i> *° <i>K</i> *° | $-3.7 \pm 3.3 \stackrel{+2.5}{_{-2.7}}$                | -                | -                                          | <0.2                    |
| $K^{*o}K^{+}\pi^{-}$    | $0.5 \pm 32.3 + 44 - 40$                               | 0.0              | $0.04 \pm 2.55 \stackrel{+3.43}{_{-3.16}}$ | <7.6                    |
| K*0 (1430)K*0 (1430)    | -28 ±16 +88 -21                                        | -                | -                                          | <4.7                    |
| K*0 (1430)K*0           | $8.0 \pm 18.7 \frac{+24}{-30}$                         | 0.3              | $0.24 \pm 0.55 \stackrel{+0.71}{-0.90}$    | <1.7                    |
| $K^+\pi^-K^+\pi^-$      | $11 \pm 28 \begin{array}{c} ^{+31}_{-102} \end{array}$ | 0.3              | $0.8 \pm 2.2 + 2.4 - 7.8$                  | <6.0                    |

As expected by theory: no clear hint of signal.

# A COMPARISON WITHBABARPRL 97, 201801 (2006) $\rho^0 K^{*0}$ PRL 100, 081801 (2008) $K^{*0} \overline{K}^{*0}$

These two VV channels has been measured by BaBar already...





•  $B \rightarrow \rho^{\circ} K^{* \circ}$ 

| Experiment | N(BB) | Yields     | Sig.(σ) | BF (10 <sup>-6</sup> )                                                                   | $f_L$          |
|------------|-------|------------|---------|------------------------------------------------------------------------------------------|----------------|
| Belle      | 657M  | 77.6 +28.6 | 2.7     | $2.1 \begin{array}{c} ^{+0.8}_{-0.7} \begin{array}{c} ^{+0.9}_{-0.5} \end{array} (<3.4)$ | not measured   |
| BaBar      | 232M  | 185±30     | 5.3     | 5.6±0.9 ±1.3 !?                                                                          | 0.57±0.09±0.08 |

| Experiment | N(BB) | Yields                     | Sig.(σ) | BF (10 <sup>-6</sup> )                        | $f_L$                                                         |
|------------|-------|----------------------------|---------|-----------------------------------------------|---------------------------------------------------------------|
| Belle      | 657M  | 7.7 +9.7 +2.8<br>-8.5 -2.2 | 0.9     | 0.26 +0.33 +0.10 (<0.8)                       | not measured                                                  |
| BaBar      | 383M  | 33.5 +9.1 -8.1             | 6.0     | 1.28 <sup>+3.5</sup> <sub>-3.0</sub> ±0.11 !? | $0.80 \begin{array}{c} ^{+0.10}_{-0.12} \pm 0.12 \end{array}$ |

20

## SUMMARY

- We present two recent measurements with 657M *B*-meson pairs recorded by the Belle detector:
  - *B→X<sub>s</sub>η* measurement is carried out with a semi-inclusive method. A large branching fraction is found for *M*(*X<sub>s</sub>*)>2 GeV/*c*<sup>2</sup>, following the same track in the η' channel.
  - Two penguin dominated B→VV channels and the associated decays are studied; the three body B→ρ°K<sup>+</sup>π<sup>-</sup> decay is observed for the first time. Some differences are found by comparing Belle/BaBar results a further investigation is needed.

Stay tuned, more interesting results are coming in the near future.