Results from the E391a Experiment at KEK

G.Y.Lim

IPNS,KEK

BEACH2010 @ Perujia, 24th June, 2010

 $κ_1 \rightarrow π^0 ν ν$ Decay

CP Violating FCNC Process

$$Br(K_{\rm L} \to \pi^0 \nu \bar{\nu}) = \kappa_{\rm L} \cdot \left(\frac{{\rm Im}\lambda_t}{\lambda^5} X(x_t)\right)^2$$

$$\kappa_{\rm L} = \frac{r_{K_{\rm L}}}{r_{K^+}} \frac{\tau(K_{\rm L})}{\tau(K^+)} \kappa_+ = 1.80 \cdot 10^{-10}$$

(2.49 ± 0.39) × 10⁻¹¹

(F. Mescia and C. Smith, PRD76, 074017(2007))

1-2 % error to evaluate the BR.

New physics contribution

Experimental Study

2020

2015

Experimental Method

Experimental feature

- Extremely suppressed process(O(-11))
- Weak kinematical constraints
 - Backgrounds rejection is the main subject
- Any single π° generation would be background.
 - KL decays.
 - Neutrons; $n+A \rightarrow \pi^{\circ}+n+A$
- To confirm Nothing.
 - Detector system having high detection efficiency.
- Multi-particle rejection.
 - Monitoring channels (Kpi3, Kpi2, K $\gamma\gamma$).

Hermetic veto system with high detection efficiency

Fine segmented Calorimeter for correct γ -counting

Neutron Background

E391a @ KEK-PS

The E391a Detector

Analysis Flow

Al target Run

- Reference of neutron interaction
- Used for BG. estimation
- Confirmation of M.C. validity (FLUKA package)

 4γ invariant mass

- Normalization of number of KL decays
- Overall check of detection inefficiency for missing photon

M.C. matched data

Summary of B.G.

Background source	e	Estimated number of BG
Halo neutron BG	CC02- π^0	0.66 ± 0.39
	$ ext{CV-}\pi^0$	< 0.36
	$\text{CV-}\eta$	0.19 ± 0.13
K_L^0 decay BG	$K^0_L o \pi^0 \pi^0$	$(2.4 \pm 1.8) \times 10^{-2}$
	$\bar{K}_L^0 \longrightarrow \gamma \gamma$	Negligible
	Charged modes	Negligible ($\mathcal{O}(10^{-4})$)
Other BG	Backward π^0	< 0.05
	Residual gas	Negligible ($\mathcal{O}(10^{-4})$)
Total		0.87 ± 0.41

Results

of KL decay

 $(8.70 \pm 0.17_{\text{stat.}} \pm 0.59_{\text{syst.}}) \times 10^9$

Signal Acceptance $A_{\text{signal}} = (1.06 \pm 0.08)\% \text{ (for Run-2)}$

 $A_{\text{signal}} = (1.01 \pm 0.06)\%$ (for Run-3)

S.E.S.

 $(1.11 \pm 0.02_{\text{stat.}} \pm 0.10_{\text{syst.}}) \times 10^{-8}$

Br($\kappa_{L} \rightarrow \pi^{0} \nu \nu$) < 2.6X10⁻⁸

Step-by-step

Summary

- Searching for $K_{L} \rightarrow \pi^{0} \nu \nu$ decay is difficult but interesting.
- We need a dedicated experiment.
- E391a allowed us to move forward to the next step with the same way.
- Neutron backgrounds were dominated.
 - We will suppress them down to O(-11)
 - Step-by-step approach

Acceptance

Selections / Reasons	Acceptance
Geometrical acceptance	$19.5 \ \%$
Veto cuts	47.4~%
Kinematic selections	22.8~%
P_T - $Z_{\rm VTX}$ selection	51.6~%
Accidental activities	92.6~(89.4)~%
Total	1.06~(1.01)~%

Figure 8.9: Mechanism of backward-going π^0 background.

Figure 8.10: P_T vs. $Z_{\rm VTX}$ distributions of the backward-going π^0 background with all veto cuts are imposed.